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Executive summary 

Wireless networks have become indispensable to citizens, enterprises and 

industries, such as transport (including autonomous vehicles and drones), logistics, 

utilities and manufacturing. As a result, wireless networks are facing increasingly 

diverse, stringent service requirements, which causes insufficient network 

management. So how to characterize and forecast high-dimensional complex 

traffic patterns for individual (or aggregated) services become open challenges. In 

this report, we will take advantage of Artificial Intelligence (AI) to forecast spatial-

temporal patterns of traffic and mobility for individual (or aggregated) services, 

identify the representative subset(s) of various services, and then optimise the 

typical RAN deployment based on diverse traffic patterns for different scenarios in 

Ranplan Professional. 
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1. Introduction 

Future wireless networks are the Internet of Everything (IoE) network, which have 

become indispensable to citizens, enterprises and industries, such as transport 

(including autonomous vehicles and drones), logistics, utilities and manufacturing, 

therefore, they have become the cornerstone of the global digital economy and a key 

component in our daily lives. Each year, the mobile cellular network industry 

contributes 3.6% to the global GDP ($2.4 trillion), supports 10.5 million jobs, and has 

contributed to $336 billion of public funding. The wireless network relies on widely 

distributed communication nodes, such as terrestrial base stations, to enable service 

for diverse scenarios. Generally, cell densification results in a growth of capacity and 

coverage.  

In dense urban areas, large crowds can form, disperse, migrate, and demand wireless 

services in spontaneous and unpredictable ways. The diverse, stringent service 

requirements of wireless networks indicate that existing reactive network 

management will be insufficient, while intelligent and proactive control of service-

centric networks becomes essential. However, mobile users and their data demands 

are not uniformly distributed in space or over time, thus it is challenging to 

characterize and forecast high-dimensional complex traffic patterns for individual (or 

aggregated) services. 

Network planning and optimisation request to configure the traffic pattern, and then 

optimise the network deployment. This report will develop probabilistic deep 

learning (DL) to recognize the environment and forecast spatial-temporal patterns of 

traffic and mobility for individual (or aggregated) services and quantify the 

associated service-specific prediction uncertainties, identify the representative 

subset(s) of various services, and then optimis the network deployment and radio 

access network (RAN) parameters based on the diverse services for the different 

scenarios. 

1.1  Purpose of this document 

The objective of this report is to present part of the work and activities of the IPOSEE 

consortium during this project duration for work package one. The general aim is to 

use dataset to analyze and forecast the traffic pattern, and optimise network 

deployment to meet the requirement of services, i.e. 

⚫ Use alternative dataset to identify the environment for the hotspot; 

⚫ Run unsupervised learning algorithm to separate the data to clusters and predict 

the traffic trend;  

⚫ Run the automatic cell optimization (ACO) to optimise the network deployment 

and RAN parameters to meet the requirements of Quality of Service (QoS) and 

capacity; 

1.2  Document structure 

This report will present the main implementation in Section 3that is split into three 

sub-sections: 

⚫ Section 3.1 Determine the traffic hotspots by using alternative dataset. 

⚫ Section 3.2 Run unsupervised learning algorithm to separate the data into clusters 

and identify the spatial-temporal traffic trend. 

⚫ Section 3.3 Optimise the network deployment by comparing iteratively optimises 

the network deployment to meet the requirement of traffic 
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2. Wireless traffic forecasting 

More wireless traffic is generated at hotspots, such as office, commercial centre, train 

station and airport, etc., where wireless traffic is highly correlated with the type of the 

environment, and knowledge of these characteristics enables proactive and dynamic 

network operation. This section will present how to identify the traffic hotspots area 

automatically, how to predict the wireless spatial-temporal patterns of traffic and 

trend, and how to optimise the wireless network based on the traffic requirements.  

2.1 Environment identification for traffic hotspot areas determination 

This subsection provides a solution to determine the traffic hotspot areas 

automatically, and then classify these areas into different traffic clusters. Subsection 

3.2 provides a prediction algorithm to forecast the traffic trend for different clusters 

based on the traffic data set. 

In order to reach our objective, we need to train a model to be able to apply semantic 

segmentation on aerial or satellite images. The purpose of this model is to recognize 

various types of environments, which may have different traffic requirements.  

2.1.1 Dataset 

The first step is to prepare the dataset. We have used the public dataset ‘Semantic 

segmentation of aerial imagery from Kaggle 

(https://www.kaggle.com/datasets/humansintheloop/semantic-segmentation-of-aerial-

imagery). The dataset consists of aerial imagery of Dubai obtained by MBRSC 

satellites and annotated with pixel-wise semantic segmentation in various classes 

(Building, Land, Road, etc.). The total volume of the dataset is 72 images grouped 

into 6 larger tiles. Since we have mainly focused on the obstacles that may affect 

signal propagation, we have modified the original classes into more detailed 6 

classes, as shown in Table 1: 

Class Class Name Color Hex # Color RGB 

0 Unlabelled 9B9B9B (226, 169, 41) 

1 Metro and Trains  3C1098 (60, 16, 152) 

2 Airport 8429F6 (132, 41, 246) 

3 Commercial centres 6EC1E4 (110, 193, 228) 

4 Corporate Office FEDD3A (254, 221, 58) 

6 Stadiums E2A929 (80, 227, 194) 

Table 1. Class definition 

Original classes are labelled with hex colour code, and we have transferred the 

original masks in RGB and encode the output as integers for later segmentation tasks 

training. 

2.1.2 Data augmentation 

Next, we have applied data augmentation by the following techniques: 

• Random cropping 

https://www.kaggle.com/datasets/humansintheloop/semantic-segmentation-of-aerial-imagery
https://www.kaggle.com/datasets/humansintheloop/semantic-segmentation-of-aerial-imagery
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• Horizontal flipping 

• Vertical flipping 

• Rotation 

• Gaussian noise and filtering operations 

2.1.3 Model training 

We have used the InceptionResNetV2 model which has been pre-trained on the 

ImageNet dataset as an encoder network.  A decoder network has been extended from 

the last layer of the pre-trained model, and it is concatenated to the consecutive layers 

to suit for our class design. The architecture is shown in Figure 1. 

 

Figure 1.  Model training architecture. 

During training, we have tried several combinations of hyper-parameters, and the 

final training parameters are as follows: 

• Batch Size = 16.0 

• Steps per Epoch = 32.0 

• Validation Steps = 4.0 

• Input Shape = (512, 512, 3) 

• Initial Learning Rate = 0.0001  

• Number of Epochs = 60 

Based on the model training algorithm, we can determine the spatial traffic hotspot 

areas, as shown in Figure 2, where the environment and buildings are identified.  
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Figure 2. Environment type identification. 

2.2 Spatial-temporal traffic forecasting 

This section provides a prediction algorithm to forecast the traffic trend for different 

clusters based on the traffic data set. We use network deployment of France to 

illustrate the algorithms, and the network deployment across France is shown in 

Figure 3, where thousands of base stations are installed at more than 1000 locations. 

 

Figure 3. Network deployment across France. 

2.2.1 Spatial traffic classification 

Downlink and uplink internet traffic load of base stations in the wireless network and 

mobile application utilization, at an aggregated level, allow us to distinguish different 

environment types, e.g., metros, corporate offices, expo centers etc. The data set 

include metros, train stations, stadiums, airport, highway and tunnel, commercial 

centers, corporate offices, etc. Based on these traffic data, the spatial traffic can be 

predicted, where a hierarchical clustering algorithm is used to identify common 

trends and split the data to clusters, as shown in Figure 4 and Figure 5. 
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Figure 4. Spatial traffic classification. 

 

Figure 5. Traffic clustering.  

2.2.2 Temporal traffic  

Based on the traffic clusters, the traffic with different time can be analyzed, as shown 

in Figure 6, where traffic distribution in one week is curved, which can be trained to 

predict the traffic pattern.   

 

Figure 6. Temporal traffic analysis. 
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2.2.3 Spatial-temporal traffic predictions 

We use explainable artificial intelligence to interpret the results of clustering analysis, 

as shown in Figure 7. To probe the dynamics of the hotspots’ mobile traffic demands 

and characteristics across the nationwide network infrastructure, we pursue an 

unsupervised learning approach. In particular, we consider the aggregated sum of the 

downlink and uplink traffic recorded for each mobile service over the target two-

month period as a distinct feature, and we form a matrix, 𝑇𝑁×𝑀 , comprising the 

overall traffic in megabytes (MB) for 𝑁 = 4, 762 indoor antennas and 𝑀 = 73 mobile 

services included in the data set. To capture the impact of each mobile service in the 

data generated at each antenna, we use the revealed symmetric comparative 

advantage (RSCA) as a metric, defined as: 

𝑅𝑆𝐶𝐴𝑖,𝑗 = (𝑅𝐶𝐴𝑖,𝑗 −1)/( 𝑅𝐶𝐴𝑖,𝑗 +1), 

Where RCA means revealed comparative advantage, 𝑅𝐶𝐴𝑖,𝑗 = (𝑇𝑖,𝑗/𝑇𝑖)/(𝑇𝑗/𝑇𝑡𝑜𝑡) 

and 𝑇𝑖,𝑗 stands for the traffic recorded for the 𝑗-th service at the 𝑖-th antenna, 𝑇𝑖 refers 

to the total traffic generated at the 𝑖-th antenna for all the services, 𝑇𝑗  depicts the 

summed traffic over all antennas for the 𝑗-th service, and 𝑇𝑡𝑜𝑡  is the total traffic 

channeled through the network during the entire period in question. 

To cluster the traffics according to these values, we used agglomerative clustering, 

which is a state-of-the-art hierarchical clustering algorithm, following a bottom-up 

approach. Initially, it is assumed that each data point forms its own cluster, and 

thereafter the clusters are merged greedily according to a specified criterion. In 

particular, we use Ward’s criterion which aims at minimizing the total intra-cluster 

variance, measured as the squared distance between the cluster centers, when 

merging two clusters. Hence, the clustering algorithm starts from N distinct clusters 

and repeatedly merges the clusters, reducing the total number in a way that the new 

cluster yields a reduced intra-cluster variance. The number of clusters is set to k = 9, 

according to the Silhouette Score and the Dunn index.  

Then, to uncover the patterns that the hotspots’ traffic exhibit over time, the data 

from the different clusters indicated from the previous analysis are aggregated and a 

statistical analysis is performed. The following heatmaps show the evolution of the 

normalized median traffic per hour across all the antennas found in workspaces 

(cluster 3) and metro/train station (cluster 0). Evidently, it can be pointed out that 

there is a strong correlation between the temporal patterns and the indoor 

environment type; cluster 4 demonstrates a traffic peak during the common weekly 

commuting hours, while cluster 3 consisting primarily of workspaces that remains 

idle during weekends and after working hours, i.e., 5.30 pm, and all traffic is 

concentrated between working hours. 

 

 

Figure 7. Traffic predictions. 
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Figure 8 presents the spatial-temporal traffic patterns after predicting the spatial 

traffic clusters and temporal traffic, where a high-dimensional complex traffic 

patterns for individual (or aggregated) services is analyzed. The spatial-temporal 

traffic patterns can be inputted into Automatic Cell Optimization (ACO) module in 

Ranplan professional. 

 

Figure 8. Spatial-temporal traffic patterns. 

2.3 Automatic cell optimisation in Ranplan Professional 

Accordingly, this section takes advantage of Ranplan Professional to model the 

buildings and wireless environments according to the traffic requirements. This 

simulation will accurately and quantitatively deploy the network to meet the traffic 

requirement of hotspots by the ACO (Automate Cell Optimiser). We will analyze an 

indoor office scenario. 

2.3.1 Outdoor environment and indoor building modeling in Ranplan 

Professional 

Considering that the outdoor network will impact the coverage and capacity of 

hotspot significantly, the outdoor scenarios should be modeled close to reality. In this 

outdoor case, the outdoor scenario is modelled via importing the GIS data, including 

building, foliage, terrain, clutter data, that can be directly imported to Ranplan 
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Professional using the following function within the ‘Project explorer’, as Figure 9 

shows. 

 

Figure 9. GIS data import function in Ranplan Professional. 

The software will automatically generate the outdoor scenario based on the imported 

data. The generated outdoor scenario can be checked in either 2D or 3D. Two views 

of the outdoor scenario are shown in Figures 10, where the corresponding indoor 

building is modelling in this tool, as shown in Figure 11.  

 

 

Figure 10. 3D and 2D view of the imported GIS data. 

 

Figure 11. 3D and 2D indoor building. 
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Based on the solution of Section 3.1, this building is identified as a commercial 

center, and the corresponding spatial-temporal traffic patterns are forecasted. 

2.3.2 Traffic configuration in Ranplan Professional 

Based on the predicted traffic pattern in Section 2, the corresponding traffic maps can 

be created to optimise the network deployments and RAN parameters. Figure 12 and 

Figure 13 show the service types and traffic maps, which can be automatically 

configured from the traffic patterns.  

 

Figure 12. Service types in Ranplan Professional. 

 

Figure 13. Traffic maps. 

 

2.3.3 Simulation parameters configuration 

Table 2 shows the system configuration in the optimisation case study, and legend of 

capacity is shown in Figure 3. 

Table 2. Simulation parameters 

Parameters Configuration 

Wireless System FDD LTE 
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Carrier Frequency 2.6GHz 

Band Width 20 MHz 

Cell Transmission Power 15 dBm 

Channel Model Ranplan Maxwell Propagation Engine (MPE) 

Antenna Resolution 0.5 Meters (indoor) 

Antenna Coverage Radius 100 Meters (indoor) 

 

Figure 14.  Legend of capacity. 

2.3.4 Optimisation for traffic requirements 

Ranplan Professional provides the automatic cell optimisation (ACO) tool to optimise 

the network deployment to reduce blackspots and meet the traffic requirement of 

hotspots. Deployment optimisation traditionally considers several traffic-independent 

factors, such as propagation loss and interference. Optimisation, therefore, naturally 

assumes either a uniform user demand distribution or uses long-term statistics (i.e., 

census data) to spatially weight the optimisation. Moving beyond stationary radio 

planning is important as urban areas become more dynamically changing, more 

complex (tourists, commuters, changing urban landscape), and demand becomes 

more stochastic. In this section, ACO is used to optimise the network. 

Ranplan Professional can create multiple key performance indicators (KPIs) with 

different weights to optimise the network deployment, such as reference signal 

received power (RSRP) for coverage, throughput for traffic, as shown in Figure 15, 

where we can set high weight to optimise for important KPI.  
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Figure 15. KPI configuration for different regions-. 

In cellular communications, an outdoor base station is stationary installed on the top 

of buildings or towers. They are responsible for utilizing the radio waves as 

information carriers. Adequate transmission power should be set to enable that the 

users could receive the information correctly. A typical macro cell base station’s 

transmission power is between 43 dBm and 48 dBm. Two or three antennas divide 

the covered region into diverse sectors. Each antenna has a particular azimuth. 

Generally, the configurations (power, downtilt, azimuth, and antenna’s height, 

location) will influence the coverage. In this part, these configurations can be 

optimised in the ACO tool, as shown in Figure 16.  

 

Figure 16. Variable optimisation in the ACO tool. 
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When running the optimisation module, ACO can optimise the network deployment 

with respect to different regions, different KPIs compliances, multiple variables, and 

different weights.  

2.3.5 Performance comparison of capacity 

Capacity can also quantify how the hotspot area is improved to meet the high traffic 

requirement. The capacity indicates the amount of data that can be transferred in a 

time unit, so it is an important indicator of the quality of service. Higher capacity can 

provide better user experience.  

Figure 17 shows the results of base stations based on the traffic prediction, where 

only one snapshot traffic requirement is used to optimise the network. But the traffic 

pattern can be inputted into ACO module to optimise the network parameters 

automatically. 

The following two figures, Figure 17 and Figure 18, show the capacity distribution. 

These results show the BS deployment can meet the high traffic requirement at the 

hotspot areas. 

 

Figure 17. Optimised base station 
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Figure 18. Capacity results. 

 

Figure 19. Capacity distribution. 

From the simulation results, based on the traffic pattern, Ranplan optimisation 

module can optimise the network deployment and RAN parameter to meet the 

capacity requirement.  

3. Conclusions 

This report uses artificial intelligent algorithm to identify the wireless spatial-

temporal traffic of hotspots. Methods are developed to combine heterogeneous data 

with current state-of-the-art 3D urban indoor-outdoor propagation modeling (using 

Ranplan Professional), cost-benefit metrics ACO, heterogeneous network (HetNet) 

with load-driven interference modeling. The focus is on integrating and developing 

low complexity deployment optimisation algorithms based on automatic spatial-

temporal traffic identification methods, and subsequent optimisation for 

improvement. Based on the spatial-temporal traffic pattern, wireless networks can 

adaptively adjust the network configuration and RAN parameters, and reduce the cost 

and improve the energy efficiency. 

 


