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Executive Summary

This report presents the first deliverable of work package (WP) two of the IPOSEE
project: Joint optimization for service-centric wireless network and propagation
environment deployment. The deliverable studies performance and trade-offs in
dense deployment of base stations (BSs) with multiple-input-multiple-output
(MIMO), and improving the radio propagation environment via intelligent
reflective surfaces (IRSs). We present the system models for these deployment
scenarios for delivering service to heterogenous traffic demand over the service
area. Optimization for configuring MIMO and IRS system parameters is examined,
in order to study the capacity performance that can be achieved. Simulations are
then performed to numerically characterize and compare the performance of the
network densification via BSs and IRSs.
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1. Introduction

Mobile communications have evolved to the fifth generation (5G) systems. Today,
wireless network infrastructure plays a crucial role in modern society, transforming
how people communicate and conduct business. Mobile networks empower businesses
through e-commerce, mobile banking, and remote work, enhancing productivity and
economic growth. In addition, mobile networks have become vital for all sectors of the
society, such as healthcare, education, and emergency response.

Along the technological evolution, two techniques are of particular relevance for
improving service quality of mobile networks in 5G and beyond.

=  Multiple-Input Multiple-Output (MIMO): MIMO [1] [2] [3] is a key technology
to enhance the service coverage and network capacity. This is achieved by using
multiple antennas at the transmitter (such as a base station) and the receiver
(e.g., a user device), enabling to transmit and receive multiple data streams
simultaneously. Deploying MIMO allows to achieve higher data rates and
improved coverage, especially in challenging environments with unfavorable
conditions for radio signal propagation. Moreover, MIMO enables the same
spectrum to be shared by multiple users and hence significantly boosts the
efficiency in resource utilization.

= Intelligent Reflective Surface (IRS): The technique uses a surface containing
many small and reflecting elements that control how the radio signals are
reflected [4] [5] [6]. IRSs are placed in the environment, such as buildings walls,
to improve signal propagation by reflecting signals toward intended receivers.
Using IRSs enables to overcome obstacles and mitigate interference. In
addition, since an IRS does not actively transmit or amplify signals, it is very
energy efficient. Deploying IRSs amounts to optimizing the radio propagation
environment.

Along with the technological development, new strategies at the network level are
necessary as well, to tackle the challenge of rapid growth of data demand that causes
congestion. Among them, network densification [7] [8] [9] is an important concept. By
network densification, radio base stations (BSs) become more densely deployed,
particularly at traffic hotspots. By densification, the distance between the users and
their respective serving BSs becomes shorter, enabling stronger signals, higher data
rate, and lower latency. Densification also improves spectral efficiency by allowing
reuse of spectrum resource in smaller geographic areas, reaching higher network
capacity without the need of additional radio resource.

Within the above background, this deliverable studies the performance of MIMO and
IRS in the context of network densification in scaling up the network capacity. We
provide our system model for multi-cell MIMO and IRS, and characterize the data rate,
taking into account inter-cell interference. We then examine the optimization of system
parameters in MIMO and IRS, in order to maximize the data rate that can be achieved
in the individual BS coverage areas, subject to heterogenous user and demand
distributions. The study focuses on the capacity limit, given as the maximum level of
data demand that can be served by using MIMO-enabled or IRS-based network
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densification. Simulations are performed, to numerically assessing the benefit of
densification in capacity improvement.

The remainder of the report is organized as follows. In Section 2, we present the
underlying system model as well as the key entities and mathematical notation.
Sections 3 and 4 are devoted to performance characterization for multi-antenna BS with
MIMO and BS assisted by IRS, respectively. In Section 5, simulation results of MIMO
and IRS, in the context of network densification are presented and evaluated.
Conclusions are then given in Section 6.
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2. Basic System Model

In this section, we provide the components of the basic system model and introduce the
mathematical notation. Consider a mobile network of multiple cells with orthogonal
frequency-division multiple access (OFDMA), covering a service area with
heterogenous data traffic demand.

The set of BSs, or equivalently the set of cells, is denoted by 7 = {1, ..., I}, and the set
of users in the service area is denoted by / = {1, ...,/}. Each user has a (nominal) value
of data demand, denoted by d;. This demand, in bits, represents the amount of data
expected by the user, during the time for which performance is to be characterized. The
maximum possible scaling of this demand will be used to represent the network
capacity limit. A user is served by the cell having the strongest signal in terms of the
path loss. We use J; to represent the users served by cell i. The channel gain of BS i
and user j € J; is denoted by g;;. The channel gain tells the quality of the radio signal
of a BS and each of the users served by the BS, as well as the how the BS signal will
affect, in the form of interference, the users served by the other BSs. This basic setup,
thus far without including MIMO or IRS, is depicted in Figure 1.

D user

Base station

é

S

Figure 1. Basic system scenario.

Remark: For simplicity and ease of presentation, the number of cells is treated as a
constant in the basic system model. In the context of network densification, the addition
of network elements such as micro BSs and IRSs will be examined in Section 5, for
which the network density will be scaled up. Moreover, the term user does not
necessarily mean one physical network device, as it can be interpreted as a (small)
geographic area, and the corresponding demand represents the aggregated value of
the area. o

Denote by P; the transmission power of BS i on a resource block (RB). The signal-to-
interference-and-noise ratio (SINR) of and user j € J; is given by the following
expression.
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P;gij

SINR;; =
2keg\(i} Pr9rj + o

ij

(1)

In Equation (1), entity X.xe g\ i3 Pcgrj is the total interferences from all other BSs than

the serving BS i of user j € J;, and ng is the thermal noise power. Using the Shannon
capacity formula, the corresponding rate, R;;, is given below.

P;g;; )
R;; = Blo 1+
Y 82 ( 2keg\giy Pr9rj + no

(2)

In Equation (22), B is the bandwidth (in Hertz) of one single RB. Without loss of any
generality, it is assumed that the time duration of an RB is one time unit with respect
to data rate. Hence, the rate given in Equation (22), in effect, represents also the amount
of data delivered to user j € J; on one single RB. Then, the total number of RBs needed
in order to meet the demand d; is obtained as follows.

d; d;

Ryj Pigij
Blog, (1 ¥ e Predig + 1o

(3)

Let A denote the total number of RBs with respect to the overall frequency bandwidth
and time in question. The data demand of all users served by BS i can be met, that is,
the network has sufficient amount of resource for the users of BS i, if ZjEJiAij < A.
Thus, for the network as a whole, the resource is sufficient if the following inequality
holds.

(4)

Suppose the above holds as strict inequality for all the BSs, implying that there exists
spare resource in the time and frequency domains. We would like to examine the
performance limit in the form of capacity that is the overall amount of data demand that
can be accommodated with respect to the amount of available resource. Hence, we can
use the metric of the maximum possible uniform scaling of the user demand values,
such that the resource of at least one BS becomes exhausted. To formally define this
metric, note that 4;; is a function of demand d;. Therefore, letting A;;(d;) denote the
function, the overall capacity is defined as follows, where g denotes the demand scaling
factor.
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max q

Z Aij(qd;) <A,VieT
JE€J:

(5)

One can observe that the maximum attainable value of g in (5) can be obtained via bi-
section search. That is, given any initial value of g, one examines whether or not the
inequality in (5) is met for all the BSs. If the answer is yes, the value of g is doubled,
otherwise its value is halved. This is repeated, until the difference of two successive
updates is within a defined tolerance interval.
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3. Performance Characterization for MIMO

In this section, we build the performance model of MIMO, on top of the basic system
model. MIMO is a technique for improving spectrum efficiency, by deploying multiple
antenna for signal transmission and reception, as this allows multiple spatial streams to
be transmitted concurrently. The concept is illustrated in Figure 2.

Nt antennas

Nr antennas

N

User with
MIMO technology

Base station
with MIMO technology

Signals from different antennas

Figure 2. MIMO illustrated.

3.1 MIMO SINR

To proceed, let us assume that a BS as well as any user is equipped with N, and N,.
transmitter and receiver antennas, respectively. For user j served by BS i, the channel
condition is given by a channel matrix H;; of size N, X N.. This channel matrix
represents the wireless channel between the transmitter and receiver antennas. Denote
by x;; the transmitted symbol vector of size N, and by y;; the receiver signal vector of
size N,.. The expression of y;; is as follows, and an illustration is given in Figure 3.

Multiple input multiple output (MIMO) link

K2
Y2 Receiver
with N, antennas

Yn,

Transmitter 2
with V; antennas

V hovew, —3 V

MIMO from channel perspective

x Channel 1l

L2 P11 hiz - haw, Y2
TX antennas Rx antennas

ho1 hi2 s th,
(Input) . . . (Output)

N, ki hyz o0 haw, uw,

Figure 3. Signal in MIMO.
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E E
= |gHoxst D D [y
t LETT/=i kEJ, t

(6)

The right-hand side of (6 consists of three terms. The first term is the received signal
in amplitude on the N, antennas, governed by the channel matrix between the BS and
the user. The second term of two sums represents the total interference. The inner sum
is taken over each user k served by BS [, and the outer sum is for all BS [ other than
BS i. For each user k served by BS [, the symbol transmitted by [ to deliver data to user
k is x;;, and at user j, this transmission, scaled by the corresponding channel matrix, is
the interference received by user j, due to user k of BS [. The last term n; in (6 is the
noise vector, which is assumed to be zero mean circular symmetric complex Gaussian
(ZMCSCQG). In addition, it is assumed that the transmission power for each transmit
antenna is one unit and thus we have the constraint stated in ( 7).

Tr(xl-jxiTj) = N,

(7)

With the above, the SINR with respect to power for user j in cell i, that is proportional
to the square of its amplitude, is given by the following. It should be noted that the
SINR is a function of the signal symbols for transmission for the user in question as
well as for the other users.

E 2
N; | |Hyjoxi;] |
SINR;; (x) =

E 2
2eg\{i} ZkeJ{:N_t“Hljxlk” + Bny

(8)

In terms of capacity as discussed earlier in Section 2, the metric to be examined is the
maximum possible scaling factor g, such that the corresponding demand of all users
can be accommodated by the network, and this is formulated as follows.

logz (1 +SINR;;(x)) =qd;j€Jui€T

(9)

3.2 Optimizing MIMO Coefficients

Let us consider a generic BS i and user j € J,;. Maximizing the received signal power
amounts to the following optimization task of the MIMO coefficients for this pair of
BS and user.
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2
max ||H’-Jxl]||
Tr(xijxgrj) = N,

(10)

To solve problem (10), one can apply singular value decomposition (SVD) [10] [11]
and the water-filling algorithm [12] to determine the optimal values of vector x;;,
subject to the power constraint in (10).

SVD is a mathematical technique used to decompose a matrix into three simpler
matrices. Specifically, for a MIMO system, where the channel matrix H;; represents
the signal paths between the transmitter and receiver, SVD is performed on H;; as
follows.

Hyj = UMy Vi
(11)
In (11), the matrices used for decomposition of H;; have the following structure.

= U;; is a unitary matrix and its columns are the left singular vectors
corresponding to the receiver side.

= /A;; is a diagonal matrix containing the singular values (non-negative real
numbers) of H;;. These values represent the channel gains of independent
subchannels.

= V;;is a unitary matrix and its columns are the right singular vectors
corresponding to the transmitter side.

The key benefit of using SVD in MIMO systems is that it transforms the original
MIMO channel (a matrix) into multiple independent single-input-single-output
subchannels, each associated with one singular value in A;;. These subchannels are
orthogonal and can be treated separately, simplifying the analysis as well as
computation. Essentially, SVD diagonalizes the channel matrix, allowing us to
decouple the transmission paths. After applying SVVD, one can treat each singular value
as the gain of an independent channel, and use the water-filling algorithm to obtain the
optimal power allocation for these subchannels.

The water-filling algorithm is a known scheme for optimally allocating power across
multiple communication channels or subchannels, especially when these channels are
of varying noise levels or channel gains (as in the case with the subchannels generated
by SVD). The algorithm works based on the intuition that more power should be
allocated to good channels (those with higher gains or singular values), while less
power should be given to poor channels (those with lower gains). Mathematically, it
can be expressed as the following. Here, P; is the power allocated to subchannel i, 4 is
a “water level” that is determined based on the total available transmit power, and o; is
the square of the singular value in S\VVD for subchannel i.

Project Acronym: IPOSEE 12/30 Horizon Europe MSCA
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Ng
P; = max (?\-—2,0)
g

(12)

The above formula essentially states that power is only allocated to subchannels where
the gain (or inverse noise level) exceeds a certain threshold, and the amount of power
increases for subchannels with respect to the gain value.

Determining the optimal water level A is subject to the total power constraint. The total
available power E is allocated across the subchannels, meaning that ¥¥ , P, =E,
where N is the number of subchannels. Thus, we have the following constraint.

N
No

E max 7\——2,0 =FE

; O

i=1

(13)

The steps of computing the water level A subject to the total power limit are presented
below, with an illustration given in Figure 4.

1)

2)

3)

4)

Channel sorting: The first step is to sort the subchannels by their inverse channel
gain values —2 in ascending order. This ensures that power is allocated first to

O'l'z

subchannels with better conditions (i.e., those having higher ”—"2).
o

Number of active subchannels: Starting with all subchannels being active for
power allocation, for each subchannel, one examines whether or not the water

level A exceeds the noise-to-gain ratio % This corresponds to applying the
L

max-operator as in (12). By this step, which subchannels shall be active become
determined.

Water level calculation: The water level A is calculated such that (13) holds. Let
N’ be the number of active subchannels and V' the corresponding set, A is
obtained from the equation below.

Mo
E+Xien P
L

A=
Nl

(14)

Iterative adjustment: If the calculated water level A for all subchannels results in
allocating more power than E, the number of active subchannels is reduced by
one, by excluding the subchannel with the lowest gain. The water level A is then
recalculated considering the remaining active subchannels, and the process is
repeated until the sum of allocated power levels equals to the total available.

Project Acronym: IPOSEE 13/30 Horizon Europe MSCA
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Water-Filling Inteference value exceeding

/—\ - no power allocated

Required level A

0
Subchannels assigned power A — —

i

Available 0
power Subchannels interference level S —

a;

Subchannels

Figure 4. An illustration of the water-filling algorithm.

The procedure of configuring MIMO can be summarized as follows.

1)
2)

3)

4)

5)

6)

Apply SVD to the channel matrix H;; to obtain matrices U;;, A;;, and VS.
Diagonalize the channel into independent subchannels using A;;, where each
diagonal element (singular value) corresponds to one subchannel’s gain.

Use the water-filling algorithm to allocate the available transmission power
across the subchannels based on their gain values.

The optimal signal vector x;; is then computed by applying the power allocation
to the right singular vectors in V;;.

The precoding beamforming scheme uses the right singular matrix V;; for
precoding, ensuring that the transmitted signal is optimally shaped for the
subchannels.

On the receiver side, the left singular matrix U;; is applied for processing,
decoupling the received signal into independent subchannel signals.

In algorithmic form, the procedure is presented in Algorithm 1.

Algorithm 1: SVVD and Water-filling Algorithm for Optimal Power Allocation

Input: Channel matrix H;;, total power E, and noise power n,
Output: Optimal signal vector x;;

1 Perform SVD on the channel matrix: H;; = Ul-jAl-le?};
2 N < Number of subchannels;
3 Extract singular values: A;; = [04,03, ...on];
4 Initialize power allocation: P = [0,0, ...,0];
S Sort % of all subchannels in ascending order;
6 S « Ol;
7 Fori = 1to N do
8 S« s+ "—;’;
oj
9 Compute water level: A « ETLS;
Project Acronym: IPOSEE 14/30 Horizon Europe MSCA
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10 IfA< % then

11 N’L<— i—1;
12 ’ break;

13 End if

14  End for
15 Fori = 1to N’do

16 ’ Allocate power: P; « }\%

17 End for

18 Compute optimal signal vector: x;; < V;;VE ;
19 Transmitter: Apply re-coding using V;;;
20  Receiver: Apply post-processing using U

*

21 Return x;;;

ijs
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4. Performance Characterization for IRS

In this section, we examine the use of IRS as part of the radio propagation environment,
to achieve more favorable signal reception. Note that adding IRSs to a wireless network
infrastructure achieves similar effects of network densification, without deploying
additional BSs. In contrast to network densification using regular BSs, IRS passively
reflects radio signals and hence consumes much less energy.

4.1 IRS Model

We use the same basic notation as in Section 2. In addition, denote by £ = {1, ..., L} the
set of deployed IRSs in the network. In case one IRS is installed in the service area of
each (macro) BS, we have L = I. The set of IRSs located in the range of BS i is denoted
by £,. Without loss of generality, we assume that all the IRSs have the same number
of reflection elements (denoted by M). Let M = {1, ..., M}.

With IRS, the signals, from the performance standpoint for a user, consists of three
parts that go from the BS to the user directly, from a BS to an IRS, and from the IRS
to the user. As in Section 2, the gain of BS i and any of its user j is denoted g;;. For
BS i and IRS [, G;; is used to denote the 1 x M vector characterizing the channel
between the BS and IRS. Furthermore, the M x 1 vector for the channel between IRS
l and user j is denoted by H;;. An illustration is given in Figure 5.

A @, the reflection matrix of

the IRS (to be optimized).

IRS Controller
G, the channel

. matrix from the RS ~ H, the channel matrix
transmitter to the s from the IRS o the
%, i
IRS. E'(:,Eb‘ - receiver.
e,

[

Direct 8ignal g, the channel gain from the Receiver

transmitter to the receiver.

Transmitter

Figure 5. IRS-assisted downlink transmission.

Let ¢ = Apnetfim denote the m-th reflection coefficient of the IRS [, where A;,,, and
0., represent its amplitude and phase, respectively. The diagonal reflection matrix of
IRS [ is then given by

0, = diag($;1, P12, ---» Pim)
(15)

We assume that the amplitude and phase of any reflection element of an IRS can be
adjusted independently of each other. Hence, the value domains of the amplitude (after
normalization) and phase are as follows.
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D = {Aynetfim: 2, €[0,1],6;, € [0,2]}

(16)

4.2 SINR and Rate with IRS

Denote by x, the signal transmitted by BS k. The overall received signal by user j,
including interference, consists of the direct links from the BSs and the indirect links
via the IRSs. It is assumed that for a user j of BS i, the IRSs of the BS will contribute
to the signal reception as well as reflect interference from the other BSs, whereas the
IRSs of the other BSs do not contribute to the signal of interest or interference as they
are located much further away from the user. The received signal is then expressed in
(17). The first part corresponds to the intended signal including the direct path between
a user j of BS i, and those via the IRSs in £;. The second part is the interfering signal,
while n; is the additive white noise. Note that g, ; and > ;c., Gx;©,H;; are the channel
gain of the direct interference link and that of the IRS link between another BS k and
user j, respectively.

yj = gij"'ZGil@lHlj x; + Z 9k + Z Zle@lHlj X +1n;
ez, kETR/=i k€T TR /=ileL,

(17)

In the power domain, the interference received by user j is given by the following,
where Py is the transmission power of BS k.

2

Y = Z .gkj‘l‘Zle@lHlj Py

KET k=i =
(18)
Let p; = [P11, Pizs - Pim]T. We have
GO Hy; = Nyjipy,
(19)

where A;;; = G;diag{H;;}. We therefore have the SINR of user j € J; as follows, with
o? being the noise power. Note that the SINR is a function of the IRS reflection
configuration ¢; that is composed by ¢;,l € L.
2
|gij + Ziec, Aiji®i| P;
2
Ykeri/=i|Grj + Zier, Aji®Pi|” Px + 02

SINR;; (¢p;) =

(20)
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4.3 Optimizing IRS Reflection Coefficients

In terms of network capacity, we seek the maximum possible scaling g of the user
demand in the network, such that the scaled demand can be met. This leads to the
following optimization problem for BS i.

P1] max
[]¢ q

log, (1 + SINR;(¢)) = qd;,j € J; (21a)

Pim EDmeM,le L; (21b)
(21)

It can be observed that the rate inequality above is non-convex. To proceed, we first
introduce auxiliary variables y;, j € J;, to represent the SINR of the users. Then

problem P1 can be stated as P2 below.

P21 ma
[P2] nax q

logz(1+v;) = qd;,j € J; (222)
SINR;; (b)) =v;,j €T (22b)
(21b)
(22)

With respect to variables vy, (22a) is a convex constraint. However, (22b) is not convex.
Consider adding another set of auxiliary variables B, j € J;, with constraints below.

2

Jrj + Z Apji®;| P+ 0*<Bjj€ I,
kET R/ =i ez,

(23)
Proposition 1. Constraint (23 is convex.

Proof: One can note that
2

gij + Z APl =\ gr; + Z A @y || gk + z DAL
lEL,i lEL,L' ZEL,L

where (-)* and (-) denote conjugate and transpose-conjugate. The above, in turn,
equals the following.

* 2
Z DA Akji P+ 2R{gj z MA@} + 9w |
leL; lEL;
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Here, R denotes the real part of a complex number. One can see that the first sum above
is a second-order cone, and the second term is affine, and the results follows. o

With auxiliary variables g;, j € J;, the SINR constraint in (22 can be re-written as
follows.

P3] max
[P3] max q

(21b), (23)
2

9ij + Z Aijji®| P+ 0% =By € Js
ZEL,,;

(24)

It is easy to see that there is a one-to-one mapping of the solutions of problems P2 and
P3, and hence we have the following result.

Proposition 2. Problem P1 and P2 are equivalent.

In P3, (21b) are (23) are convex, but the SINR constraint is not. To deal with it, one
can apply the transformation of B;y; :%((ﬁj +yj)2 —(Bj —yj)z), to obtain the
following equivalent constraint.

2

B +7)* = (B —v))* = 4P |giy+ D Aip®,| <0,j€d,

leL;
(25)
As the next step, the left-hand side of (25) is treated as a function of g3, y, and ¢.
2
Fi(y;,Bj.¢:) = (B; + Vj)z — (B — Vj)z —4P;|gij + z Niji®Py| ,JET:
=T
(26)

It can be observed that function F is in fact the difference of convex (DC) functions,
and therefore DC programming techniques [13] [14] can be applied. The first-order
Taylor expansion of (ﬁj — yj)z at point (bj, cj) takes the following expression.

B —v)) =2(b;—c)(B;—v)) — (b — ;) + 2(Br))

(27)
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In the above, {(B;,v;) denotes the remainder of the Taylor expansion. Since (S; — yj)z
is convex, Z(ﬁj,yj) = 0. By combining (26) and (27), we obtain the inequality below.
2 2
(Bi—v))" =z 2(bj—c))(B—v) — (b — ;)
(28)

For the last part of (26), a similar derivation can be done for given point O; of ®,;,l €
L;,and &;; of g;;, to obtain the inequality below, where (-)* and () denote conjugate
and transpose-conjugate, and R denotes the real part of a complex number.

2
fij"‘ZAijoDz = fij"‘ZAijoDz EZ}+Z<D{“’AZ-1

leL; leL; leL;

2
2
= ZAijlcbl + 2R EijZCDIHAIi—jII + | &

lel:,i IE[,,,;
* 2
2
= 2R Eij"‘ZAilel ZAijlq)l — ZAijl 0| + |&;]
leL; leL; IG[,,,;

(29)
The one can define a new function as follows.

Fi(viBi b)) = (B +vi)" —2(bj— ) (B —v;) — (b —¢;)°

2

2\ .
—4P;| 2R Eij"'ZAilel ZAijchl — ZAijlol +[&;]" |.jed:

leL; leL; leL;
(30)

By the constructions made, the new function defined by (30) is equal or above the value
curve of the original function.

Proposition 3. Fj(y]-,ﬁj, gb,-) = E(Vj':gj'¢j)-

By the above, the following inequality is used to approximate (25). Note that by
Proposition 3, any point satisfying the inequality below is guaranteed to satisfy (25).

Fi(vj.Bj,#;) <0,j €I,
(31)
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It is important to note that function Fj(yj,ﬁj,q,')i) is a sum of convex functions
(including affine functions), thus the approximate constraint (31) is convex. Therefore,
we arrive at the following convex optimization problem.

P4] max
[P4] max q

(21b), (23), (31)
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5. Simulation Results

5.1 Simulation Setup

For simulation and performance evaluation, we start with a basic setup of seven macro
BSs, with 20 users randomly and uniformly located in the service area of each BS. This
is illustrated in Figure 6.

Distance (km)
o«
»,
o~

0 2 3 6 8 10
Distance (km)

Figure 6. Basic system setup.

The basic setup is used as the reference level of performance in terms of capacity (i.e.,
maximum uniform scaling of user data demand that can be accommodated). It is then
augmented with the following schemes for performance evaluation and comparison.

= Densification: In this scheme, the network is densified by adding ten micro BSs
for each macro BS.

= Basic + MIMO: This is the basic setup but with MIMO enabled for multiple
antennas; it is assumed a BS uses 16 antennas and the user at the receiver side
has 4 antennas.

= Basic + IRS: In this case, the network is densified by adding three IRSs to each
BS’ area.

= Basic + MIMO + IRS: As indicated by the name, this is the combination of
using MIMO and densification with IRS.

= Densification + MIMO: This setup corresponds to adding MIMO to the
densified network with macro and micro BSs.

= Densification + IRS: This setup corresponds to adding IRSs to the densified
network with macro and micro BSs.

= Densification + MIMO + IRS: As the last scheme, MIMO and IRS are both used
in conjunction with the densified network with macro and micro BSs.

It is expected that the more system elements introduced, the higher the capacity.
However, it is important to quantify the performance gain enabled by the various
schemes since there is a cost-performance trade-off.
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The channel between and cell i and user j is given by g;; =Di;acugo, where D;;

denotes the distance between the BS of cell i and user j, a, is the path loss exponent,
and g, follows a Rayleigh distribution. Similarly, the channel between the BS of cell i
and IRS lis given by G;; = Di_lo‘“'GO, and the channel from IRS [ to user j is given by

Hyj = Dl}“i”Ho. The parameter values used in the simulations are given in Table 1.

Parameter

Specification

Number of users per macro BS

Macro cell radius

Carrier frequency

Total bandwidth

Path loss model

Shadowing (Log-normal)

Fading

Power (per resource block) of macro BS
Power (per resource block) of micro BS
Noise power spectral density

Direct path loss exponent o,

BS-IRS path loss exponent o;

IRS-user path loss exponent «;,,

20

1km

2 GHz

20 MHz
COST-231-HATA [15] [16]
6 dB standard deviation
Rayleigh flat fading
200 mW

50 mW

—174 dBm/Hz

3.5

22/438

22/4.8

Table 1. Simulation parameters.

When IRS is present, a comparison of capacity with good and poor IRS propagation is
made, in order to gain a comprehensive performance figure. In the former case, the path
loss exponents for BS-IRS link and the IRS-user link are set to 2.2. For the latter, an
exponent value of 4.8 is used.

In Figure 7, the probability density function (PDF) of the path loss values of the users
(with respect to the serving BS) in the basic system scenario is shown. One can observe
that the CDF assembles a normal distribution, with a mean path loss of approximately
85 dB. The scenario does not have a bias toward the proportion of cell-center and cell-
edge users.
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Figure 7. Probability density function of user path loss.

5.2 Performance Result in Capacity

The performance results of network capacity are shown in Figure 8. the maximum
possible scaling of user demand is used to represent network capacity.

40 40
Basic setup —
[Densification

Basic setup
[ Densification

30 -
20 20 |-
10 -

m om0

The scaling factor of demand

The scaling factor of demand

Baseline +IRS +MIMO +IRS & MIMO Baseline +IRS +MIMO +IRS & MIMO
(a) Comparison of capacity with good IRS (b) Comparison of capacity with poor IRS
propagation environemnt. propagation environemnt.

Figure 8. Capacity comparison with two different path loss exponent values for schemes with IRS, where
the base demand is 1 Mbps per user and number of reflection elements of an IRS equals 100.

From Figure 8(a), by deploying IRS, the capacity is about four times in comparison to
the basic setup. A similar amount of capacity improvement can be obtained by
deploying MIMO. A combined use of both boosts the capacity further, which becomes
about six times of that of the basic setup. Therefore, both techniques as well as their
joint use are effective for improving capacity. From the same figure, one can observe
that a basic network densification (without IRS or MIMO) gives a similar effect as
deploying IRS or MIMO in increasing capacity. The improvement becomes much more
by combining densification with IRS or MIMO - the capacity is increased by a factor
of approximately 13. Here, MIMO gives slightly better performance than IRS.
Moreover, with a joint use of densification, and IRS as well as MIMO, the additional
improvement is very significant; the capacity can be scaled up by a factor of about 25.

From Figure 8(b), the performance of those schemes that include the use of IRS are
clearly impacted, if the IRSs have a poor propagation environment. Note that the
performance gain due to IRS in the densified network is still clearly noticeable. On the
other hand, with MIMO and densification by micro BSs, adding IRSs gives only
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moderate performance boost. It is worth pointing out that the performance comparison
here assumes 100 reflection elements of each IRS. As will be seen later on, having
more elements does help the performance of IRS.

5.3 Performance in Cell Load

The next part of performance study is the resource consumption of the various schemes
for given user demand. This metric, referred to as cell load [17], represents the
proportion of time-frequency RBs that become occupied in the cell due to delivering
the data traffic demand of the cell’s users. We focus on the seven macro cells, and

examine how MIMO and IRS, as well as densification influence the resource
consumption.

100 100
[Basic [Basic
[+ IRS . O+ 1RS
e 80 O+ MIMO © 801 [+ MIMO
e M B+ MIMO & IRS bt M ~ @+ MIMO & RS
o0 M on
8 60 M g 60 |- M
[
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g g 401
2 £
=] Q
| H H H | HI H H H HH
LA 0 o A o | AL AN 6 W W A
1 2 3 4 5 6 7 1 2 3 4 5 6 7
Base station index (after sorting) Base station index (after sorting)
(a) Cell load with good IRS propagation (b) Cell load with poor IRS propagation
environemnt. environemnt.

Figure 9. Cell load of macro BSs without network densification, where data demand is 1 Mbps per user
and the number of reflection elements of an IRS equals 100.

The results of the basic setup, and those by using MMO and IRS, without network
densification with any micro cell, are shown in Figure 9. The seven macro cells are
sorted in descending order of cell load. Without using MIMO or IRS, the cell load is
approximately in the range of [0.3, 0.7]. Assuming a favorable IRS propagation
environment, by Figure 9(a), adding IRSs reduces the resource consumption by more
than 50%, and the effect is largest for the most congested cell. Deploying MIMO gives
an even better result — the highest cell load is reduced by almost 60%, and combining
MIMO and IRS yields additional gain though the amount is moderate. One can also see
that the benefit of joint use is smaller for cells that are congested. For a poor IRS
propagation environment, IRS brings, as expected, less benefit, as shown in Figure
9(b), even though the improvement in resource utilization is still noticeable for the most
congested cell. It is worth noting that combining MIMO with IRS still gives slight
performance gain, even with poor IRS propagation environment.

It is of interested to understand how much MIMO and IRS bring, in comparison to
network densification, as well as the effect of them together on cell load. The results

are presented Figure 10. One shall pay attention to that the scale of the vertical axis in
Figure 10 is different than that of Figure 9.
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Figure 10. Cell load of macro BSs with network densification, where data demand is 1 Mbps per user
and the number of reflection elements of an IRS equals 100.

The first and immediate observation is that network densification by means of micro
cells leads to tremendous reduction of network resource consumption, in comparison
to the basic setup. For the most congested cell, the load is reduced from above 0.7 to
0.15; thus the improvement factor is close to five. The reduction is less significant in
the other cells but remains very significant. This demonstrates that network
densification is very effective. By using MIMO or IRS (assuming a favorable
propagation environment for the latter), the improvement becomes even higher, though
the relative reduction of resource consumption is less than what can be achieved by
these techniques without first applying densification. It is noted again that the gain due
to MIMO is somewhat larger than IRS. If the IRS propagation environment is poor, it
can still give some improvement though the effect is visible for the cells with high load
levels only. After network densification, combining MIMO and IRS is meaningful,
only under favorable IRS propagation conditions.

From the above results, it can be concluded that densification via adding micro BSs
brings higher performance than modifying the signal propagation with IRS. One can
observe that by deploying IRS only, the resource consumption can be cut by more than
half as long as the IRS propagation environment is good. With densification, the
reduction approaches 80%. However, one shall bear in mind that, in deployment, a BS
is more costly than an IRS. Moreover, since IRS targets optimizing signal reflection
than active transmission, it also has lower energy consumption. Therefore, there is a
trade-off of performance versus cost and energy efficiency. Based on the results,
introducing densification to some extent though not aggressively, along with modifying
the environment with IRSs, is likely the best choice of addressing the cost-benefit trade-
off.

5.4 Performance with Respect to the Number of IRS Elements

As acknowledged earlier, the results presented have been obtained by assuming that
each IRS has 100 reflection elements. In reality, it is possible to have a larger number
of reflection elements with a comparable deployment cost. Hence it is relevant to
understand how scaling up the size of an IRS would benefit the performance, and the
results are displayed in Figure 11.
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Figure 11. Network capacity with respect to the number of IRS reflection elements.

From Figure 11, with a favorable IRS propagation environment, the number of
reflection elements does have a clear effect on network capacity. For the basic setup as
well as for MIMO, having IRS and increasing the number of elements from 100 to 180
almost doubles the capacity. As can be expected, the increase in capacity becomes more
significant with respect to the number of elements, when network densification is in
place. Note that even if the IRS propagation environment is poor, it still helps under
network densification. Thus, network densification with a reasonable cost-benefit
trade-off, is a promising approach, and there is a synergy of densification and
modifying signal environment with IRSs.
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6. Conclusions

In this deliverable, the IPOSEE project has investigated the performance of dense
deployment of base station (BSs), in the form of network densification, and its interplay
with intelligent reflective surface (IRS) that can improve the radio propagation
environment. The deliverable has also studied the effect of multi-antenna systems with
multiple-input-multiple-output (MIMO). To have a unified performance
characterization, network capacity limit, in terms of the maximum level of user demand
that can be accommodated within the time-frequency resource limit, has been used as
the main metric for the various schemes and deployment scenarios. In addition,
methods for optimizing and MIMO and IRS systems parameters have been studied.

There are a few key finding by the simulation results. First, MIMO, when used alone,
clearly can boost network capacity and reduce resource consumption. Since the BSs
and user devices are now largely supporting MIMO, what is probably more interesting
in the context of IPOSEE project is the effect of modifying the physical radio
propagation environment. To this end, network densification offers a dramatic
performance improvement, which, however, comes at the price of deployment cost.
The use of IRS, by itself, if the IRS propagation environment is favorable, gives a
considerable capacity increase, and the joint use of IRS and MIMO, and that with
network densification, is highly relevant for gain additional performance benefits.
Furthermore, the performance via IRS does improve in the number of reflection
elements. Finally, given that deploying IRSs is both easier and less costly then network
densification by adding new BSs, a moderate amount of densification, combined with
deployment of IRSs, is expected to achieve the optimal performance-cost tradeoff.
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