
 

 

 

Horizon Europe MSCA Project 

(Grant Agreement Number 101086219) 

 

 

Intelligent and Proactive Optimisation 

for Service-centric Wireless Networks  

 

 

 

 

 

 

 

 

  

D2.1 

 

Performance limits and trade-offs in the 

interplay of densely deploying APs and 

modifying the built environment 

 



 

Authors(s) Kan Lin, Zhanwei Yu, Di Yuan, Yi Zhao 

Author(s) Affiliation Ranplan Wireless Ltd. UK and Uppsala 

University, Sweden 

 Editor(s):  X. Chu, Y. Kritikou, and H. Hu. 

Status-Version: 1.0 

Project Number: 101086219 

Project Title: Intelligent and Proactive Optimisation for 

Service-centric Wireless Networks 

Project Acronym: IPOSEE 

Work Package Number 2 



Project Acronym:  IPOSEE 

Version 1.0 

Project Coordinator: Uppsala University 

1/30 

 

  
Horizon Europe MSCA  

Grant Agreement No. 101086219 

Table of Contents 

 

EXECUTIVE SUMMARY ................................................................................................. 4 

1. INTRODUCTION ................................................................................................... 5 

2. BASIC SYSTEM MODEL ...................................................................................... 7 

3. PERFORMANCE CHARACTERIZATION FOR MIMO ................................ 10 

3.1 MIMO SINR .......................................................................................................... 10 

3.2 OPTIMIZING MIMO COEFFICIENTS ...................................................................... 11 

4. PERFORMANCE CHARACTERIZATION FOR IRS ...................................... 16 

4.1 IRS MODEL ............................................................................................................ 16 

4.2 SINR AND RATE WITH IRS .................................................................................. 17 

4.3 OPTIMIZING IRS REFLECTION COEFFICIENTS ..................................................... 18 

5. SIMULATION RESULTS ................................................................................... 22 

5.1 SIMULATION SETUP .............................................................................................. 22 

5.2 PERFORMANCE RESULT IN CAPACITY .................................................................. 24 

5.3 PERFORMANCE IN CELL LOAD .............................................................................. 25 

5.4 PERFORMANCE WITH RESPECT TO THE NUMBER OF IRS ELEMENTS ............... 26 

6. CONCLUSIONS .................................................................................................... 28 

 

 

 

 

  



Project Acronym:  IPOSEE 

Version 1.0 

Project Coordinator: Uppsala University 

2/30 

 

  
Horizon Europe MSCA  

Grant Agreement No. 101086219 

List of Figures 

Figure 1.  Basic system scenario. .............................................................................. 7 

Figure 2.  MIMO illustrated. ................................................................................... 10 

Figure 3.  Signal in MIMO. ..................................................................................... 10 

Figure 4.  An illustration of the water-filling algorithm. ........................................ 14 

Figure 5.  IRS-assisted downlink transmission. ...................................................... 16 

Figure 6.  Basic system setup. ................................................................................. 22 

Figure 7.  Probability density function of user path loss. ....................................... 24 

Figure 8.  Capacity comparison with two different path loss exponent values for 

schemes with IRS, where the base demand is 1 Mbps per user and number of 

reflection elements of an IRS equals 100. ............................................................... 24 

Figure 9.  Cell load of macro BSs without network densification, where data demand 

is 1 Mbps per user and the number of reflection elements of an IRS equals 100... 25 

Figure 10.  Cell load of macro BSs with network densification, where data demand 

is 1 Mbps per user and the number of reflection elements of an IRS equals 100... 26 

Figure 11.  Network capacity with respect to the number of IRS reflection elements.

 ................................................................................................................................. 27 

 



Project Acronym:  IPOSEE 

Version 1.0 

Project Coordinator: Uppsala University 

3/30 

 

  
Horizon Europe MSCA  

Grant Agreement No. 101086219 

List of Tables 

Table 1. Simulation parameters. .............................................................................. 23 

  



Project Acronym:  IPOSEE 

Version 1.0 

Project Coordinator: Uppsala University 

4/30 

 

  
Horizon Europe MSCA  

Grant Agreement No. 101086219 

Executive Summary 

This report presents the first deliverable of work package (WP) two of the IPOSEE 

project: Joint optimization for service-centric wireless network and propagation 

environment deployment. The deliverable studies performance and trade-offs in 

dense deployment of base stations (BSs) with multiple-input-multiple-output 

(MIMO), and improving the radio propagation environment via intelligent 

reflective surfaces (IRSs). We present the system models for these deployment 

scenarios for delivering service to heterogenous traffic demand over the service 

area. Optimization for configuring MIMO and IRS system parameters is examined, 

in order to study the capacity performance that can be achieved. Simulations are 

then performed to numerically characterize and compare the performance of the 

network densification via BSs and IRSs. 



Project Acronym:  IPOSEE 

Version 1.0 

Project Coordinator: Uppsala University 

5/30 

 

  
Horizon Europe MSCA  

Grant Agreement No. 101086219 

1. Introduction 

Mobile communications have evolved to the fifth generation (5G) systems. Today, 

wireless network infrastructure plays a crucial role in modern society, transforming 

how people communicate and conduct business. Mobile networks empower businesses 

through e-commerce, mobile banking, and remote work, enhancing productivity and 

economic growth. In addition, mobile networks have become vital for all sectors of the 

society, such as healthcare, education, and emergency response. 

Along the technological evolution, two techniques are of particular relevance for 

improving service quality of mobile networks in 5G and beyond. 

▪ Multiple-Input Multiple-Output (MIMO): MIMO [1] [2] [3] is a key technology 

to enhance the service coverage and network capacity. This is achieved by using 

multiple antennas at the transmitter (such as a base station) and the receiver 

(e.g., a user device), enabling to transmit and receive multiple data streams 

simultaneously. Deploying MIMO allows to achieve higher data rates and 

improved coverage, especially in challenging environments with unfavorable 

conditions for radio signal propagation. Moreover, MIMO enables the same 

spectrum to be shared by multiple users and hence significantly boosts the 

efficiency in resource utilization. 

▪ Intelligent Reflective Surface (IRS): The technique uses a surface containing 

many small and reflecting elements that control how the radio signals are 

reflected [4] [5] [6]. IRSs are placed in the environment, such as buildings walls, 

to improve signal propagation by reflecting signals toward intended receivers. 

Using IRSs enables to overcome obstacles and mitigate interference. In 

addition, since an IRS does not actively transmit or amplify signals, it is very 

energy efficient. Deploying IRSs amounts to optimizing the radio propagation 

environment. 

Along with the technological development, new strategies at the network level are 

necessary as well, to tackle the challenge of rapid growth of data demand that causes 

congestion. Among them, network densification [7] [8] [9] is an important concept. By 

network densification, radio base stations (BSs) become more densely deployed, 

particularly at traffic hotspots. By densification, the distance between the users and 

their respective serving BSs becomes shorter, enabling stronger signals, higher data 

rate, and lower latency. Densification also improves spectral efficiency by allowing 

reuse of spectrum resource in smaller geographic areas, reaching higher network 

capacity without the need of additional radio resource. 

Within the above background, this deliverable studies the performance of MIMO and 

IRS in the context of network densification in scaling up the network capacity. We 

provide our system model for multi-cell MIMO and IRS, and characterize the data rate, 

taking into account inter-cell interference. We then examine the optimization of system 

parameters in MIMO and IRS, in order to maximize the data rate that can be achieved 

in the individual BS coverage areas, subject to heterogenous user and demand 

distributions. The study focuses on the capacity limit, given as the maximum level of 

data demand that can be served by using MIMO-enabled or IRS-based network 
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densification. Simulations are performed, to numerically assessing the benefit of 

densification in capacity improvement.  

The remainder of the report is organized as follows. In Section 2, we present the 

underlying system model as well as the key entities and mathematical notation. 

Sections 3 and 4 are devoted to performance characterization for multi-antenna BS with 

MIMO and BS assisted by IRS, respectively. In Section 5, simulation results of MIMO 

and IRS, in the context of network densification are presented and evaluated. 

Conclusions are then given in Section 6. 
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2. Basic System Model 

In this section, we provide the components of the basic system model and introduce the 

mathematical notation. Consider a mobile network of multiple cells with orthogonal 

frequency-division multiple access (OFDMA), covering a service area with 

heterogenous data traffic demand.  

The set of BSs, or equivalently the set of cells, is denoted by ℐ =  {1, … , 𝐼}, and the set 

of users in the service area is denoted by 𝐽 =  {1, … , 𝐽}. Each user has a (nominal) value 

of data demand, denoted by 𝑑𝑗. This demand, in bits, represents the amount of data 

expected by the user, during the time for which performance is to be characterized. The 

maximum possible scaling of this demand will be used to represent the network 

capacity limit. A user is served by the cell having the strongest signal in terms of the 

path loss. We use 𝒥𝑖 to represent the users served by cell 𝑖. The channel gain of BS 𝑖 

and user 𝑗 ∈ 𝒥𝑖 is denoted by 𝑔𝑖𝑗. The channel gain tells the quality of the radio signal 

of a BS and each of the users served by the BS, as well as the how the BS signal will 

affect, in the form of interference, the users served by the other BSs. This basic setup, 

thus far without including MIMO or IRS, is depicted in Figure 1. 

 

 

Figure 1.  Basic system scenario. 

Remark: For simplicity and ease of presentation, the number of cells is treated as a 

constant in the basic system model. In the context of network densification, the addition 

of network elements such as micro BSs and IRSs will be examined in Section 5, for 

which the network density will be scaled up. Moreover, the term user does not 

necessarily mean one physical network device, as it can be interpreted as a (small) 

geographic area, and the corresponding demand represents the aggregated value of 

the area.  □  

Denote by 𝑃𝑖 the transmission power of BS 𝑖 on a resource block (RB). The signal-to-

interference-and-noise ratio (SINR) of and user 𝑗 ∈ 𝒥𝑖  is given by the following 

expression.  
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SINR𝑖𝑗 =
𝑃𝑖𝑔𝑖𝑗

∑ 𝑃𝑘𝑔𝑘𝑗𝑘∈𝒥∖{𝑖} + 𝑛0
 

( 1 )  

In Equation (1), entity ∑ 𝑃𝑘𝑔𝑘𝑗𝑘∈𝒥∖{𝑖}  is the total interferences from all other BSs than 

the serving BS 𝑖 of user 𝑗 ∈ 𝒥𝑖, and 𝑛0 is the thermal noise power. Using the Shannon 

capacity formula, the corresponding rate, 𝑅𝑖𝑗, is given below. 

𝑅𝑖𝑗 = Blog2 (1 +
𝑃𝑖𝑔𝑖𝑗

∑ 𝑃𝑘𝑔𝑘𝑗𝑘∈𝒥∖{𝑖} + 𝑛0
) 

( 2 )  

In Equation (22), 𝐵 is the bandwidth (in Hertz) of one single RB. Without loss of any 

generality, it is assumed that the time duration of an RB is one time unit with respect 

to data rate. Hence, the rate given in Equation (22), in effect, represents also the amount 

of data delivered to user 𝑗 ∈ 𝒥𝑖 on one single RB. Then, the total number of RBs needed 

in order to meet the demand 𝑑𝑗 is obtained as follows. 

𝐴𝑖𝑗 =
𝑑𝑗

𝑅𝑖𝑗
=

𝑑𝑗

𝐵log2 (1 +
𝑃𝑖𝑔𝑖𝑗

∑ 𝑃𝑘𝑔𝑘𝑗𝑘∈𝒥∖{𝑖} + 𝑛0
)

 

 ( 3 )  

Let A denote the total number of RBs with respect to the overall frequency bandwidth 

and time in question. The data demand of all users served by BS i can be met, that is, 

the network has sufficient amount of resource for the users of BS i, if ∑ 𝐴𝑖𝑗 ≤ 𝐴𝑗∈𝒥𝒾
. 

Thus, for the network as a whole, the resource is sufficient if the following inequality 

holds. 

∑ 𝐴𝑖𝑗

𝑗∈𝒥𝒾

≤ 𝐴, ∀𝑖 ∈ ℐ 

 ( 4 )  

Suppose the above holds as strict inequality for all the BSs, implying that there exists 

spare resource in the time and frequency domains. We would like to examine the 

performance limit in the form of capacity that is the overall amount of data demand that 

can be accommodated with respect to the amount of available resource. Hence, we can 

use the metric of the maximum possible uniform scaling of the user demand values, 

such that the resource of at least one BS becomes exhausted. To formally define this 

metric, note that 𝐴𝑖𝑗 is a function of demand 𝑑𝑗. Therefore, letting 𝐴𝑖𝑗(𝑑𝑗) denote the 

function, the overall capacity is defined as follows, where 𝑞 denotes the demand scaling 

factor. 
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max  𝑞 

∑ 𝐴𝑖𝑗(𝑞𝑑𝑗)  ≤ 𝐴

𝑗∈𝒥𝒾

, ∀𝑖 ∈ ℐ 

( 5 ) 

One can observe that the maximum attainable value of 𝑞 in (5) can be obtained via bi-

section search. That is, given any initial value of 𝑞, one examines whether or not the 

inequality in (5) is met for all the BSs. If the answer is yes, the value of 𝑞 is doubled, 

otherwise its value is halved. This is repeated, until the difference of two successive 

updates is within a defined tolerance interval. 
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3. Performance Characterization for MIMO 

In this section, we build the performance model of MIMO, on top of the basic system 

model. MIMO is a technique for improving spectrum efficiency, by deploying multiple 

antenna for signal transmission and reception, as this allows multiple spatial streams to 

be transmitted concurrently. The concept is illustrated in Figure 2.  

 

Figure 2.  MIMO illustrated. 

3.1 MIMO SINR 

To proceed, let us assume that a BS as well as any user is equipped with 𝑁𝑡 and 𝑁𝑟 

transmitter and receiver antennas, respectively. For user 𝑗 served by BS 𝑖, the channel 

condition is given by a channel matrix 𝐻𝑖𝑗  of size 𝑁𝑟 × 𝑁𝑡 . This channel matrix 

represents the wireless channel between the transmitter and receiver antennas. Denote 

by 𝑥𝑖𝑗 the transmitted symbol vector of size 𝑁𝑡, and by 𝑦𝑖𝑗 the receiver signal vector of 

size 𝑁𝑟. The expression of 𝑦𝑖𝑗 is as follows, and an illustration is given in Figure 3.  

 

Figure 3.  Signal in MIMO. 
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𝑦𝑖𝑗 = √
𝐸

𝑁𝑡
𝐻𝑖𝑗𝑥𝑖𝑗 + ∑ ∑  

𝑘∈𝒥𝓁

√
𝐸

𝑁𝑡
𝐻𝑙𝑗𝑥𝑙𝑘

𝑙∈ℐ,𝑙/=𝑖

+ 𝑛𝑗 

( 6 )  

The right-hand side of (6 consists of three terms. The first term is the received signal 

in amplitude on the Nr antennas, governed by the channel matrix between the BS and 

the user. The second term of two sums represents the total interference. The inner sum 

is taken over each user 𝑘 served by BS 𝑙, and the outer sum is for all BS 𝑙 other than 

BS 𝑖. For each user 𝑘 served by BS 𝑙, the symbol transmitted by 𝑙 to deliver data to user 

𝑘 is 𝑥𝑙𝑘, and at user 𝑗, this transmission, scaled by the corresponding channel matrix, is 

the interference received by user 𝑗, due to user 𝑘 of BS 𝑙. The last term 𝑛𝑗 in (6 is the 

noise vector, which is assumed to be zero mean circular symmetric complex Gaussian 

(ZMCSCG). In addition, it is assumed that the transmission power for each transmit 

antenna is one unit and thus we have the constraint stated in ( 7). 

Tr(𝑥𝑖𝑗𝑥𝑖𝑗
𝑇 ) = 𝑁𝑡 

( 7 )  

With the above, the SINR with respect to power for user 𝑗 in cell 𝑖, that is proportional 

to the square of its amplitude, is given by the following. It should be noted that the 

SINR is a function of the signal symbols for transmission for the user in question as 

well as for the other users.  

SINR𝑖𝑗(𝑥) =

𝐸
𝑁𝑡

||𝐻𝑖𝑗𝑥𝑖𝑗||
2

∑  𝑙∈𝒥∖{𝑖} ∑
E
Nt

||𝐻𝑙𝑗𝑥𝑙𝑘||
2

k∈𝒥𝓁
+ 𝐵𝑛0

 

( 8 )  

In terms of capacity as discussed earlier in Section 2, the metric to be examined is the 

maximum possible scaling factor 𝑞, such that the corresponding demand of all users 

can be accommodated by the network, and this is formulated as follows. 

log2 (1 + SINR𝑖𝑗(𝑥))   ≥ 𝑞𝑑𝑗, j ∈ 𝒥𝒾, i ∈ ℐ 

( 9 ) 

3.2 Optimizing MIMO Coefficients 

Let us consider a generic BS 𝑖 and user 𝑗 ∈ 𝒥𝒾. Maximizing the received signal power 

amounts to the following optimization task of the MIMO coefficients for this pair of 

BS and user.  
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max   ||𝐻𝑖𝑗𝑥𝑖𝑗||
2
 

Tr(𝑥𝑖𝑗𝑥𝑖𝑗
𝑇 ) = 𝑁𝑡 

( 10 ) 

To solve problem (10), one can apply singular value decomposition (SVD) [10] [11]  

and the water-filling algorithm [12] to determine the optimal values of vector 𝑥𝑖𝑗 , 

subject to the power constraint in (10). 

SVD is a mathematical technique used to decompose a matrix into three simpler 

matrices. Specifically, for a MIMO system, where the channel matrix 𝐻𝑖𝑗 represents 

the signal paths between the transmitter and receiver, SVD is performed on 𝐻𝑖𝑗  as 

follows. 

𝐻𝑖𝑗 = 𝑈𝑖𝑗Λ𝑖𝑗𝑉𝑖𝑗
𝑇 

( 11 )  

In (11), the matrices used for decomposition of 𝐻𝑖𝑗 have the following structure. 

▪ 𝑈𝑖𝑗  is a unitary matrix and its columns are the left singular vectors 

corresponding to the receiver side. 

▪ Λ𝑖𝑗  is a diagonal matrix containing the singular values (non-negative real 

numbers) of 𝐻𝑖𝑗 . These values represent the channel gains of independent 

subchannels. 

▪ V𝑖𝑗 is a unitary matrix and its columns are the right singular vectors 

corresponding to the transmitter side. 

The key benefit of using SVD in MIMO systems is that it transforms the original 

MIMO channel (a matrix) into multiple independent single-input-single-output 

subchannels, each associated with one singular value in Λ𝑖𝑗. These subchannels are 

orthogonal and can be treated separately, simplifying the analysis as well as 

computation. Essentially, SVD diagonalizes the channel matrix, allowing us to 

decouple the transmission paths. After applying SVD, one can treat each singular value 

as the gain of an independent channel, and use the water-filling algorithm to obtain the 

optimal power allocation for these subchannels. 

The water-filling algorithm is a known scheme for optimally allocating power across 

multiple communication channels or subchannels, especially when these channels are 

of varying noise levels or channel gains (as in the case with the subchannels generated 

by SVD). The algorithm works based on the intuition that more power should be 

allocated to good channels (those with higher gains or singular values), while less 

power should be given to poor channels (those with lower gains). Mathematically, it 

can be expressed as the following. Here, 𝑃𝑖 is the power allocated to subchannel 𝑖, 𝜆 is 

a “water level” that is determined based on the total available transmit power, and 𝜎𝑖 is 

the square of the singular value in SVD for subchannel 𝑖. 
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𝑃𝑖 = max (λ-
𝑛0

𝜎𝑖
2

,0) 

( 12 )  

The above formula essentially states that power is only allocated to subchannels where 

the gain (or inverse noise level) exceeds a certain threshold, and the amount of power 

increases for subchannels with respect to the gain value. 

Determining the optimal water level 𝜆 is subject to the total power constraint. The total 

available power 𝐸  is allocated across the subchannels, meaning that ∑ 𝑃𝑖
𝑁
𝑖=1 = 𝐸 , 

where 𝑁 is the number of subchannels. Thus, we have the following constraint. 

∑ max (λ-
𝑛0

𝜎𝑖
2

,0) = 𝐸

𝑁

𝑖=1

 

( 13 ) 

The steps of computing the water level 𝜆 subject to the total power limit are presented 

below, with an illustration given in Figure 4. 

1) Channel sorting: The first step is to sort the subchannels by their inverse channel 

gain values 
𝑛0

σ𝑖
2 in ascending order. This ensures that power is allocated first to 

subchannels with better conditions (i.e., those having higher 
𝑛0

𝜎𝑖
2). 

2) Number of active subchannels: Starting with all subchannels being active for 

power allocation, for each subchannel, one examines whether or not the water 

level 𝜆  exceeds the noise-to-gain ratio 
𝑛0

𝜎𝑖
2 . This corresponds to applying the 

max-operator as in (12). By this step, which subchannels shall be active become 

determined. 

3) Water level calculation: The water level 𝜆 is calculated such that (13) holds. Let 

𝑁’ be the number of active subchannels and 𝒩′  the corresponding set, λ is 

obtained from the equation below. 

λ =
𝐸 + ∑

𝑛0

σ𝑖
2𝑖∈𝒩′

𝑁′
 

( 14 ) 

4) Iterative adjustment: If the calculated water level 𝜆 for all subchannels results in 

allocating more power than 𝐸, the number of active subchannels is reduced by 

one, by excluding the subchannel with the lowest gain. The water level 𝜆 is then 

recalculated considering the remaining active subchannels, and the process is 

repeated until the sum of allocated power levels equals to the total available. 
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Figure 4.  An illustration of the water-filling algorithm.  

 

The procedure of configuring MIMO can be summarized as follows. 

1) Apply SVD to the channel matrix 𝐻𝑖𝑗 to obtain matrices 𝑈𝑖𝑗, Λ𝑖𝑗, and 𝑉𝑖𝑗
𝑇. 

2) Diagonalize the channel into independent subchannels using Λ𝑖𝑗 , where each 

diagonal element (singular value) corresponds to one subchannel’s gain. 

3) Use the water-filling algorithm to allocate the available transmission power 

across the subchannels based on their gain values. 

4) The optimal signal vector 𝑥𝑖𝑗
∗  is then computed by applying the power allocation 

to the right singular vectors in 𝑉𝑖𝑗. 

5) The precoding beamforming scheme uses the right singular matrix 𝑉𝑖𝑗  for 

precoding, ensuring that the transmitted signal is optimally shaped for the 

subchannels.  

6) On the receiver side, the left singular matrix 𝑈𝑖𝑗  is applied for processing, 

decoupling the received signal into independent subchannel signals. 

In algorithmic form, the procedure is presented in Algorithm 1. 

Algorithm 1: SVD and Water-filling Algorithm for Optimal Power Allocation 

 Input: Channel matrix 𝐻𝑖𝑗, total power 𝐸, and noise power 𝑛0 

 Output: Optimal signal vector 𝑥𝑖𝑗
∗  

1 Perform SVD on the channel matrix: 𝐻𝑖𝑗 = 𝑈𝑖𝑗Λ𝑖𝑗𝑉𝑖𝑗
𝑇; 

2 𝑁 ← Number of subchannels; 

3 Extract singular values: Λ𝑖𝑗 = [𝜎1, 𝜎2, … 𝜎𝑁]; 

4 Initialize power allocation: 𝑃 = [0,0, … ,0]; 
5 Sort 

𝑛0

σ𝑖
2 of all subchannels in ascending order;  

6 𝑠 ← 0; 

7 For 𝑖 =  1 to 𝑁 do 

8 
 

s ← s +
𝑛0

σi
2; 

9 
 Compute water level: λ ←

𝐸+𝑠

𝑖
; 
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10 
 

If λ ≤
n0

𝜎𝑖
2 then  

11   𝑁’ ← 𝑖 − 1; 

12   break; 

13  End if 

14 End for 

15 For 𝑖 =  1 to 𝑁’ do 

16 
 

Allocate power: 𝑃𝑖 ← λ
𝑛0

σ𝑖
2 ; 

17 End for 

18 Compute optimal signal vector: 𝑥𝑖𝑗
* ← 𝑉𝑖𝑗√𝐸 ; 

19 Transmitter: Apply re-coding using 𝑉𝑖𝑗; 

20 Receiver: Apply post-processing using 𝑈𝑖𝑗; 

21 Return 𝑥𝑖𝑗
∗ ; 
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4. Performance Characterization for IRS 

In this section, we examine the use of IRS as part of the radio propagation environment, 

to achieve more favorable signal reception. Note that adding IRSs to a wireless network 

infrastructure achieves similar effects of network densification, without deploying 

additional BSs. In contrast to network densification using regular BSs, IRS passively 

reflects radio signals and hence consumes much less energy. 

4.1 IRS Model 

We use the same basic notation as in Section 2. In addition, denote by ℒ = {1, … , 𝐿} the 

set of deployed IRSs in the network. In case one IRS is installed in the service area of 

each (macro) BS, we have 𝐿 = 𝐼. The set of IRSs located in the range of BS 𝑖 is denoted 

by ℒ𝒾. Without loss of generality, we assume that all the IRSs have the same number 

of reflection elements (denoted by 𝑀). Let ℳ = {1, … , 𝑀}. 

With IRS, the signals, from the performance standpoint for a user, consists of three 

parts that go from the BS to the user directly, from a BS to an IRS, and from the IRS 

to the user. As in Section 2, the gain of BS 𝑖 and any of its user 𝑗 is denoted 𝑔𝑖𝑗. For 

BS 𝑖  and IRS 𝑙 , 𝐺𝑖𝑙  is used to denote the 1 × 𝑀  vector characterizing the channel 

between the BS and IRS. Furthermore, the 𝑀 × 1 vector for the channel between IRS 

𝑙 and user 𝑗 is denoted by 𝐻𝑙𝑗. An illustration is given in Figure 5. 

 

Figure 5.  IRS-assisted downlink transmission. 

Let 𝜙𝑙𝑚 = 𝜆𝑙𝑚𝑒𝑖𝜃𝑙𝑚 denote the 𝑚-th reflection coefficient of the IRS 𝑙, where λ𝑙𝑚 and 

θ𝑙𝑚 represent its amplitude and phase, respectively. The diagonal reflection matrix of 

IRS 𝑙 is then given by  

Θ𝑙 = diag(𝜙𝑙1, 𝜙𝑙2, … , 𝜙𝑙𝑀) 

( 15 ) 

We assume that the amplitude and phase of any reflection element of an IRS can be 

adjusted independently of each other. Hence, the value domains of the amplitude (after 

normalization) and phase are as follows. 
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𝒟 = {𝜆𝑙𝑚𝑒𝑖𝜃𝑙𝑚: 𝜆𝑙𝑚 ∈ [0,1], 𝜃𝑙𝑚 ∈ [0,2𝜋]} 

( 16 ) 

4.2 SINR and Rate with IRS 

Denote by 𝑥𝑘 the signal transmitted by BS 𝑘. The overall received signal by user 𝑗, 

including interference, consists of the direct links from the BSs and the indirect links 

via the IRSs. It is assumed that for a user 𝑗 of BS 𝑖, the IRSs of the BS will contribute 

to the signal reception as well as reflect interference from the other BSs, whereas the 

IRSs of the other BSs do not contribute to the signal of interest or interference as they 

are located much further away from the user. The received signal is then expressed in 

(17). The first part corresponds to the intended signal including the direct path between 

a user 𝑗 of BS 𝑖, and those via the IRSs in ℒi. The second part is the interfering signal, 

while 𝑛𝑗 is the additive white noise. Note that 𝑔𝑘𝑗 and ∑ 𝐺𝑘𝑙Θ𝑙𝐻𝑙𝑗𝑙∈ℒ𝒾
 are the channel 

gain of the direct interference link and that of the IRS link between another BS 𝑘 and 

user 𝑗, respectively. 

𝑦𝑗 = (𝑔𝑖𝑗 + ∑ 𝐺𝑖𝑙Θ𝑙𝐻𝑙𝑗

𝑙∈ℒ𝒾

) 𝑥𝑖 + ( ∑ 𝑔𝑘𝑗

𝑘∈ℐ:𝑘/=𝑖

+ ∑ ∑ 𝐺𝑘𝑙

𝑙∈ℒ𝒾𝑘∈ℐ:𝑘/=𝑖

Θ𝑙𝐻𝑙𝑗) 𝑥𝑘 + 𝑛𝑗 

( 17 ) 

In the power domain, the interference received by user 𝑗 is given by the following, 

where 𝑃𝑘 is the transmission power of BS 𝑘.  

Υ𝑖𝑗 = ∑ |𝑔𝑘𝑗 + ∑ 𝐺𝑘𝑙Θ𝑙𝐻𝑙𝑗

𝑙∈ℒ𝒾

|

2

𝑃𝑘

𝑘∈ℐ:𝑘/=𝑖

 

( 18 ) 

Let 𝜙𝑙 = [𝜙𝑙1, 𝜙𝑙2, … , 𝜙𝑙𝑀]𝑇. We have 

𝐺𝑖𝑙Θ𝑙𝐻𝑙𝑗 = Λ𝑖𝑗𝑙𝜙𝑙, 

( 19 ) 

where Λ𝑖𝑗𝑙 = 𝐺𝑖𝑙diag{𝐻𝑙𝑗}. We therefore have the SINR of user 𝑗 ∈ 𝒥𝑖 as follows, with 

σ2  being the noise power. Note that the SINR is a function of the IRS reflection 

configuration 𝜙𝑖 that is composed by 𝜙𝑙, 𝑙 ∈ ℒ𝒾.   

SINR𝑖𝑗(𝜙𝑖) =
|𝑔𝑖𝑗 + ∑ Λ𝑖𝑗𝑙Φ𝑙𝑙∈ℒ𝒾

|
2

𝑃𝑖

∑ |𝑔𝑘𝑗 + ∑ Λ𝑘𝑗𝑙Φ𝑙𝑙∈ℒ𝒾
|

2
𝑘∈ℐ,𝑘/=𝑖 𝑃𝑘 + 𝜎2

 

( 20 )  
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4.3 Optimizing IRS Reflection Coefficients 

In terms of network capacity, we seek the maximum possible scaling 𝑞 of the user 

demand in the network, such that the scaled demand can be met. This leads to the 

following optimization problem for BS 𝑖. 

[P1] max
𝜙

  𝑞 

log2 (1 + SINR𝑖𝑗(𝜙𝑖)) ≥ 𝑞d𝑗, 𝑗 ∈ 𝒥𝒾  (21a) 

𝜙𝑙𝑚 ∈ 𝒟, 𝑚 ∈ ℳ, 𝑙 ∈ ℒ𝒾                      (21b) 

( 21 )  

It can be observed that the rate inequality above is non-convex. To proceed, we first 

introduce auxiliary variables 𝛾𝑗,  𝑗  ∈   𝒥𝒾 , to represent the SINR of the users. Then 

problem P1 can be stated as P2 below. 

[P2] max
𝜙,𝛾

  𝑞 

log2(1 + γ𝑗) ≥ 𝑞𝑑𝑗, j ∈ 𝒥𝒾  (22a) 

SINR𝑖𝑗(ϕ𝑖) ≥ γ𝑗, 𝑗 ∈ 𝒥𝑖       (22b)                  

(21b) 

( 22 )  

With respect to variables γ, (22a) is a convex constraint. However, (22b) is not convex. 

Consider adding another set of auxiliary variables βj,  j  ∈   𝒥𝒾, with constraints below. 

∑ |𝑔𝑘𝑗 + ∑ Λ𝑘𝑗𝑙Φ𝑙

𝑙∈ℒ𝒾

|

2

𝑃𝑘 + σ2 ≤ βj, j ∈ 𝒥𝒾

𝑘∈ℐ,𝑘/=𝑖

 

( 23 )  

Proposition 1. Constraint (23 is convex.  

Proof: One can note that  

|𝑔𝑘𝑗 + ∑ Λ𝑘𝑗𝑙Φ𝑙

𝑙∈ℒ𝒾

|

2

= (𝑔𝑘𝑗 + ∑ Λ𝑘𝑗𝑙Φ𝑙

𝑙∈ℒ𝒾

) (𝑔𝑘𝑗
∗ + ∑ Φ𝑙

𝐻Λ𝑘𝑗𝑙
𝐻

𝑙∈ℒ𝒾

) 

where (⋅)∗  and (⋅)𝐻  denote conjugate and transpose-conjugate. The above, in turn, 

equals the following. 

∑ Φ𝑙
𝐻Λ𝑘𝑗𝑙

𝐻 Λ𝑘𝑗𝑙Φ𝑙

𝑙∈ℒ𝒾

+ 2ℛ{𝑔𝑘𝑙
∗ ∑ Λ𝑘𝑗𝑙Φ𝑙}

𝑙∈𝐿𝑖

+ |𝑔𝑘𝑗|
2
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Here, ℛ denotes the real part of a complex number. One can see that the first sum above 

is a second-order cone, and the second term is affine, and the results follows. □ 

With auxiliary variables 𝛽𝑗,  𝑗  ∈   𝒥𝒾, the SINR constraint in (22 can be re-written as 

follows. 

[P3] max
𝜙,𝛾,𝛽

  𝑞 

(21b), (23) 

|𝑔𝑖𝑗 + ∑ Λ𝑖𝑗𝑙Φ𝑙

𝑙∈ℒ𝒾

|

2

𝑃𝑖 + σ2 ≥ βjγj, j ∈ 𝒥𝒾 

 ( 24 )  

It is easy to see that there is a one-to-one mapping of the solutions of problems P2 and 

P3, and hence we have the following result. 

Proposition 2. Problem P1 and P2 are equivalent. 

In P3, (21b) are (23) are convex, but the SINR constraint is not. To deal with it, one 

can apply the transformation of 𝛽𝑗𝛾𝑗 =
1

4
((𝛽𝑗 + 𝛾𝑗)

2
− (𝛽𝑗 − 𝛾𝑗)

2
) , to obtain the 

following equivalent constraint. 

(𝛽𝑗 + 𝛾𝑗)
2

− (𝛽𝑗 − 𝛾𝑗)
2

− 4𝑃𝑖 |𝑔𝑖𝑗 + ∑ Λ𝑖𝑗𝑙

𝑙∈ℒ𝒾

Φ𝑙|

2

≤ 0, 𝑗 ∈ 𝒥𝒾 

( 25 ) 

As the next step, the left-hand side of (25) is treated as a function of 𝛽, 𝛾, and 𝜙. 

𝐹𝑗(𝛾𝑗, 𝛽𝑗, 𝜙𝑖) = (𝛽𝑗 + 𝛾𝑗)
2

− (𝛽𝑗 − 𝛾𝑗)
2

− 4𝑃𝑖 |𝑔𝑖𝑗 + ∑ Λ𝑖𝑗𝑙

𝑙∈ℒ𝒾

Φ𝑙|

2

, 𝑗 ∈ 𝒥𝒾 

( 26 ) 

It can be observed that function 𝐹 is in fact the difference of convex (DC) functions, 

and therefore DC programming techniques [13] [14] can be applied. The first-order 

Taylor expansion of (𝛽𝑗 − 𝛾𝑗)
2
 at point (𝑏𝑗, 𝑐𝑗) takes the following expression. 

(𝛽𝑗 − 𝛾𝑗)
2

= 2(𝑏𝑗 − 𝑐𝑗)(𝛽𝑗 − 𝛾𝑗) − (𝑏𝑗 − 𝑐𝑗)
2

+ 𝜁(𝛽𝑗, 𝛾𝑗) 

 

( 27 ) 
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In the above, 𝜁(𝛽𝑗, 𝛾𝑗) denotes the remainder of the Taylor expansion. Since (𝛽𝑗 − 𝛾𝑗)
2
 

is convex, 𝜁(𝛽𝑗, 𝛾𝑗) ≥ 0. By combining (26) and (27), we obtain the inequality below.  

 

(𝛽𝑗 − 𝛾𝑗)
2

≥ 2(𝑏𝑗 − 𝑐𝑗)(𝛽𝑗 − 𝛾𝑗) − (𝑏𝑗 − 𝑐𝑗)
2
 

( 28 ) 

For the last part of (26), a similar derivation can be done for given point 𝑂𝑙 of Φ𝑙, 𝑙 ∈
ℒ𝒾, and ξ𝑖𝑗 of 𝑔𝑖𝑗, to obtain the inequality below, where  (⋅)∗ and (⋅)𝐻 denote conjugate 

and transpose-conjugate, and ℛ denotes the real part of a complex number. 

|𝜉𝑖𝑗 + ∑ Λ𝑖𝑗𝑙

𝑙∈ℒ𝒾

Φ𝑙|

2

= (𝜉𝑖𝑗 + ∑ Λ𝑖𝑗𝑙

𝑙∈ℒ𝒾

Φ𝑙) (𝜉𝑖𝑗
* + ∑ Φ𝑙

𝐻Λ𝑖𝑗𝑙
𝐻

𝑙∈ℒ𝒾

) 

= |∑ Λijl

l∈ℒ𝒾

Φl|

2

+ 2R (ξij ∑ Φl
HΛijl

H

l∈ℒ𝒾

) + |ξij|
2
 

≥ 2R {(ξ𝑖𝑗 + ∑ Λ𝑖𝑗𝑙O𝑙

𝑙∈ℒ𝒾

)

∗

(∑ Λ𝑖𝑗𝑙Φ𝑙

𝑙∈ℒ𝒾

)} − |∑ Λijl

l∈ℒ𝒾

Ol|

2

+ |ξ𝑖𝑗|
2
 

( 29 ) 

The one can define a new function as follows. 

𝐹̃𝑗(𝛾𝑗, 𝛽𝑗, 𝜙𝑖) = (𝛽𝑗 + 𝛾𝑗)
2

− 2(𝑏𝑗 − 𝑐𝑗)(𝛽𝑗 − 𝛾𝑗) − (𝑏𝑗 − 𝑐𝑗)
2
 

−4𝑃𝑖 (2R {(ξ𝑖𝑗 + ∑ Λ𝑖𝑗𝑙O𝑙

𝑙∈ℒ𝒾

)

∗

(∑ Λ𝑖𝑗𝑙Φ𝑙

𝑙∈ℒ𝒾

)} − |∑ Λijl

l∈ℒ𝒾

Ol|

2

+ |ξ𝑖𝑗|
2

) , 𝑗 ∈ 𝒥𝑖 

( 30 ) 

By the constructions made, the new function defined by (30) is equal or above the value 

curve of the original function.  

Proposition 3. 𝐹𝑗(𝛾𝑗, 𝛽𝑗, 𝜙𝑗) ≤ 𝐹̃𝑗(𝛾𝑗, 𝛽𝑗, 𝜙𝑗). 

By the above, the following inequality is used to approximate (25). Note that by 

Proposition 3, any point satisfying the inequality below is guaranteed to satisfy (25). 

𝐹̃𝑗(𝛾𝑗, 𝛽𝑗, 𝜙𝑗) ≤ 0, 𝑗 ∈ 𝒥𝒾 

 ( 31 ) 
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It is important to note that function 𝐹̃𝑗(𝛾𝑗, 𝛽𝑗, 𝜙𝑖)  is a sum of convex functions 

(including affine functions), thus the approximate constraint (31) is convex. Therefore, 

we arrive at the following convex optimization problem. 

[P4] max
𝜙,𝛾,𝛽

  𝑞 

(21b), (23), (31) 
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5. Simulation Results 

5.1 Simulation Setup 

For simulation and performance evaluation, we start with a basic setup of seven macro 

BSs, with 20 users randomly and uniformly located in the service area of each BS. This 

is illustrated in Figure 6.  

 

Figure 6.  Basic system setup. 

The basic setup is used as the reference level of performance in terms of capacity (i.e., 

maximum uniform scaling of user data demand that can be accommodated). It is then 

augmented with the following schemes for performance evaluation and comparison. 

▪ Densification: In this scheme, the network is densified by adding ten micro BSs 

for each macro BS. 

▪ Basic + MIMO: This is the basic setup but with MIMO enabled for multiple 

antennas; it is assumed a BS uses 16 antennas and the user at the receiver side 

has 4 antennas. 

▪ Basic + IRS: In this case, the network is densified by adding three IRSs to each 

BS’ area. 

▪ Basic + MIMO + IRS: As indicated by the name, this is the combination of 

using MIMO and densification with IRS. 

▪ Densification + MIMO: This setup corresponds to adding MIMO to the 

densified network with macro and micro BSs. 

▪ Densification + IRS: This setup corresponds to adding IRSs to the densified 

network with macro and micro BSs. 

▪ Densification + MIMO + IRS: As the last scheme, MIMO and IRS are both used 

in conjunction with the densified network with macro and micro BSs. 

It is expected that the more system elements introduced, the higher the capacity. 

However, it is important to quantify the performance gain enabled by the various 

schemes since there is a cost-performance trade-off. 
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The channel between and cell i  and user 𝑗  is given by 𝑔𝑖𝑗 = 𝐷𝑖𝑗
−α𝑐𝑢𝑔0 , where 𝐷𝑖𝑗 

denotes the distance between the BS of cell i and user 𝑗, α𝑐𝑢 is the path loss exponent, 

and 𝑔0 follows a Rayleigh distribution. Similarly, the channel between the BS of cell 𝑖 
and IRS 𝑙 is given by 𝐺𝑖𝑙 = 𝐷𝑖𝑙

−α𝑐𝑖𝐺0, and the channel from IRS 𝑙 to user 𝑗 is given by 

𝐻𝑙𝑗 = 𝐷𝑙𝑗
−α𝑖𝑢𝐻0. The parameter values used in the simulations are given in Table 1. 

Parameter Specification 

Number of users per macro BS 20 

Macro cell radius 1 km 

Carrier frequency 2 GHz 

Total bandwidth 20 MHz 

Path loss model COST-231-HATA [15] [16] 

Shadowing (Log-normal) 6 dB standard deviation 

Fading Rayleigh flat fading 

Power (per resource block) of macro BS 200 mW 

Power (per resource block) of micro BS 50 mW 

Noise power spectral density −174 dBm/Hz 

Direct path loss exponent α𝑐𝑢 3.5 

BS-IRS path loss exponent α𝑐𝑖  2.2 / 4.8 

IRS-user path loss exponent α𝑖𝑢 2.2 / 4.8 

Table 1. Simulation parameters. 

When IRS is present, a comparison of capacity with good and poor IRS propagation is 

made, in order to gain a comprehensive performance figure. In the former case, the path 

loss exponents for BS-IRS link and the IRS-user link are set to 2.2. For the latter, an 

exponent value of 4.8 is used. 

In Figure 7, the probability density function (PDF) of the path loss values of the users 

(with respect to the serving BS) in the basic system scenario is shown.  One can observe 

that the CDF assembles a normal distribution, with a mean path loss of approximately 

85 dB. The scenario does not have a bias toward the proportion of cell-center and cell-

edge users. 
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Figure 7.  Probability density function of user path loss. 

5.2 Performance Result in Capacity  

The performance results of network capacity are shown in Figure 8. the maximum 

possible scaling of user demand is used to represent network capacity.  

 

(a) Comparison of capacity with good IRS 

propagation environemnt. 

 

(b) Comparison of capacity with poor IRS 

propagation environemnt. 

Figure 8.  Capacity comparison with two different path loss exponent values for schemes with IRS, where 

the base demand is 1 Mbps per user and number of reflection elements of an IRS equals 100. 

From Figure 8(a), by deploying IRS, the capacity is about four times in comparison to 

the basic setup. A similar amount of capacity improvement can be obtained by 

deploying MIMO. A combined use of both boosts the capacity further, which becomes 

about six times of that of the basic setup. Therefore, both techniques as well as their 

joint use are effective for improving capacity. From the same figure, one can observe 

that a basic network densification (without IRS or MIMO) gives a similar effect as 

deploying IRS or MIMO in increasing capacity. The improvement becomes much more 

by combining densification with IRS or MIMO - the capacity is increased by a factor 

of approximately 13. Here, MIMO gives slightly better performance than IRS. 

Moreover, with a joint use of densification, and IRS as well as MIMO, the additional 

improvement is very significant; the capacity can be scaled up by a factor of about 25.   

From Figure 8(b), the performance of those schemes that include the use of IRS are 

clearly impacted, if the IRSs have a poor propagation environment. Note that the 

performance gain due to IRS in the densified network is still clearly noticeable. On the 

other hand, with MIMO and densification by micro BSs, adding IRSs gives only 
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moderate performance boost. It is worth pointing out that the performance comparison 

here assumes 100 reflection elements of each IRS. As will be seen later on, having 

more elements does help the performance of IRS. 

5.3 Performance in Cell Load 

The next part of performance study is the resource consumption of the various schemes 

for given user demand. This metric, referred to as cell load [17], represents the 

proportion of time-frequency RBs that become occupied in the cell due to delivering 

the data traffic demand of the cell’s users. We focus on the seven macro cells, and 

examine how MIMO and IRS, as well as densification influence the resource 

consumption. 

 

(a) Cell load with good IRS propagation 

environemnt. 

 

(b) Cell load with poor IRS propagation 

environemnt. 

Figure 9.  Cell load of macro BSs without network densification, where data demand is 1 Mbps per user 

and the number of reflection elements of an IRS equals 100. 

The results of the basic setup, and those by using MMO and IRS, without network 

densification with any micro cell, are shown in Figure 9. The seven macro cells are 

sorted in descending order of cell load. Without using MIMO or IRS, the cell load is 

approximately in the range of [0.3, 0.7].  Assuming a favorable IRS propagation 

environment, by Figure 9(a), adding IRSs reduces the resource consumption by more 

than 50%, and the effect is largest for the most congested cell. Deploying MIMO gives 

an even better result – the highest cell load is reduced by almost 60%, and combining 

MIMO and IRS yields additional gain though the amount is moderate. One can also see 

that the benefit of joint use is smaller for cells that are congested. For a poor IRS 

propagation environment, IRS brings, as expected, less benefit, as shown in Figure 

9(b), even though the improvement in resource utilization is still noticeable for the most 

congested cell. It is worth noting that combining MIMO with IRS still gives slight 

performance gain, even with poor IRS propagation environment. 

It is of interested to understand how much MIMO and IRS bring, in comparison to 

network densification, as well as the effect of them together on cell load. The results 

are presented Figure 10. One shall pay attention to that the scale of the vertical axis in 

Figure 10 is different than that of Figure 9. 
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(a) Cell load with good IRS propagation 

environemnt. 

 

(b) Cell load with poor IRS propagation 

environemnt. 

Figure 10.  Cell load of macro BSs with network densification, where data demand is 1 Mbps per user 

and the number of reflection elements of an IRS equals 100. 

The first and immediate observation is that network densification by means of micro 

cells leads to tremendous reduction of network resource consumption, in comparison 

to the basic setup. For the most congested cell, the load is reduced from above 0.7 to 

0.15; thus the improvement factor is close to five. The reduction is less significant in 

the other cells but remains very significant. This demonstrates that network 

densification is very effective. By using MIMO or IRS (assuming a favorable 

propagation environment for the latter), the improvement becomes even higher, though 

the relative reduction of resource consumption is less than what can be achieved by 

these techniques without first applying densification. It is noted again that the gain due 

to MIMO is somewhat larger than IRS. If the IRS propagation environment is poor, it 

can still give some improvement though the effect is visible for the cells with high load 

levels only. After network densification, combining MIMO and IRS is meaningful, 

only under favorable IRS propagation conditions. 

From the above results, it can be concluded that densification via adding micro BSs 

brings higher performance than modifying the signal propagation with IRS. One can 

observe that by deploying IRS only, the resource consumption can be cut by more than 

half as long as the IRS propagation environment is good. With densification, the 

reduction approaches 80%.  However, one shall bear in mind that, in deployment, a BS 

is more costly than an IRS. Moreover, since IRS targets optimizing signal reflection 

than active transmission, it also has lower energy consumption. Therefore, there is a 

trade-off of performance versus cost and energy efficiency. Based on the results, 

introducing densification to some extent though not aggressively, along with modifying 

the environment with IRSs, is likely the best choice of addressing the cost-benefit trade-

off. 

5.4 Performance with Respect to the Number of IRS Elements 

As acknowledged earlier, the results presented have been obtained by assuming that 

each IRS has 100 reflection elements. In reality, it is possible to have a larger number 

of reflection elements with a comparable deployment cost. Hence it is relevant to 

understand how scaling up the size of an IRS would benefit the performance, and the 

results are displayed in Figure 11. 
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(a) Capacity with good IRS propagation 

environemnt. 

 

(b) Capacity with poor IRS propagation 

environemnt. 

Figure 11.  Network capacity with respect to the number of IRS reflection elements. 

From Figure 11, with a favorable IRS propagation environment, the number of 

reflection elements does have a clear effect on network capacity. For the basic setup as 

well as for MIMO, having IRS and increasing the number of elements from 100 to 180 

almost doubles the capacity. As can be expected, the increase in capacity becomes more 

significant with respect to the number of elements, when network densification is in 

place. Note that even if the IRS propagation environment is poor, it still helps under 

network densification. Thus, network densification with a reasonable cost-benefit 

trade-off, is a promising approach, and there is a synergy of densification and 

modifying signal environment with IRSs. 
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6. Conclusions 

In this deliverable, the IPOSEE project has investigated the performance of dense 

deployment of base station (BSs), in the form of network densification, and its interplay 

with intelligent reflective surface (IRS) that can improve the radio propagation 

environment. The deliverable has also studied the effect of multi-antenna systems with 

multiple-input-multiple-output (MIMO). To have a unified performance 

characterization, network capacity limit, in terms of the maximum level of user demand 

that can be accommodated within the time-frequency resource limit, has been used as 

the main metric for the various schemes and deployment scenarios. In addition, 

methods for optimizing and MIMO and IRS systems parameters have been studied. 

There are a few key finding by the simulation results. First, MIMO, when used alone, 

clearly can boost network capacity and reduce resource consumption. Since the BSs 

and user devices are now largely supporting MIMO, what is probably more interesting 

in the context of IPOSEE project is the effect of modifying the physical radio 

propagation environment. To this end, network densification offers a dramatic 

performance improvement, which, however, comes at the price of deployment cost. 

The use of IRS, by itself, if the IRS propagation environment is favorable, gives a 

considerable capacity increase, and the joint use of IRS and MIMO, and that with 

network densification, is highly relevant for gain additional performance benefits. 

Furthermore, the performance via IRS does improve in the number of reflection 

elements. Finally, given that deploying IRSs is both easier and less costly then network 

densification by adding new BSs, a moderate amount of densification, combined with 

deployment of IRSs, is expected to achieve the optimal performance-cost tradeoff.  

 

  



Project Acronym:  IPOSEE 

Version 1.0 

Project Coordinator: Uppsala University 

29/30 

 

  
Horizon Europe MSCA  

Grant Agreement No. 101086219 

References  

[1] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang, "An Overview 

of Massive MIMO: Benefits and Challenges," IEEE Journal of Selected Topics in 

Signal Processing, vol. 8, no. 5, pp. 742-758, 2014. 

[2] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, "Massive MIMO for 

next generation wireless systems," in IEEE Communications Magazine, vol. 52, no. 2, 

pp. 186-195, 2014. 

[3] Z. Wang, J. Zhang, H. Du, D. Niyato, S. Cui, B. Ai, K. B. Letaief, and H. V. Poor, 

"A Tutorial on Extremely Large-Scale MIMO for 6G: Fundamentals, Signal 

Processing, and Applications," IEEE Communications Surveys & Tutorials, vol. 26, 

no. 3, pp. 1560-1605, 2024. 

[4] Q. Wu and R. Zhang, "Towards Smart and Reconfigurable Environment: Intelligent 

Reflecting Surface Aided Wireless Network," in IEEE Communications Magazine, vol. 

58, no. 1, pp. 106-112, 2020. 

[5] Ö. Özdogan, E. Björnson, and E. G. Larsson, "Intelligent Reflecting Surfaces: 

Physics, Propagation, and Pathloss Modeling," IEEE Wireless Communications 

Letters, vol. 9, no. 5, pp. 581-585, 2020. 

[6] S. Gong, X. Lu, D. T Hoang, D. Niyato, L. Shu, D. I. Kim, Y.-C Liang, "Toward 

Smart Wireless Communications via Intelligent Reflecting Surfaces: A Contemporary 

Survey," IEEE Communications Surveys & Tutorials, vol. 22, no. 4, pp. 2283-2314, 

2020. 

[7] N. Bhusha, J. Li, D. Malladi, R. Gilmore, D. Brenner, A. Damnjanovic, R. T. 

Sukhavasi, C. Patel, and S. Geirhofer, "Network Densification: The Dominant Theme 

for Wireless Evolution into 5G," IEEE Communications Magazine, vol. 52, no. 2, pp. 

82-89, 2014.  

[8] Y. L. Lee, D. Qin, L. -C. Wang, and G. H. Sim, "6G Massive Radio Access 

Networks: Key Applications, Requirements and Challenges," IEEE Open Journal of 

Vehicular Technology, vol. 2, pp. 54-66, 2021. 

[9] Z. Li, H. Hu, J. Zhang, and J. Zhang, "Enhancing Indoor mmWave Wireless 

Coverage: Small-Cell Densification or Reconfigurable Intelligent Surfaces 

Deployment?," IEEE Wireless Communications Letters, vol. 10, no. 11, pp. 2547-2551, 

2021. 

[10] G. Lebrun, J. Gao and M. Faulkner, "MIMO Transmission over a Time-varying 

Channel Using SVD," IEEE Transactions on Wireless Communications, vol. 4, no. 2, 

pp. 757-764, 2005. 

[11] T. J. Willink, "Efficient Adaptive SVD Algorithm for MIMO Applications," IEEE 

Transactions on Signal Processing, vol. 56, no. 2, pp. 615-622, 2008. 

[12] E. Telatar, "Capacity of Multi‐antenna Gaussian Channels,” European 

Transactions on Telecommunications, vol. 10, no. 6, pp. 585–595, 1999. 

[13] P. D. Tao and L. T. H. An, "Convex Analysis Approach to DC Programming: 

Theory, Algorithms and Applications,” Acta Mathematica Vietnamica, vol. 22, no. 1, 

pp. 289–355, 1997. 



Project Acronym:  IPOSEE 

Version 1.0 

Project Coordinator: Uppsala University 

30/30 

 

  
Horizon Europe MSCA  

Grant Agreement No. 101086219 

[14] L. T. H. An and P. D. Tao, "The DC (Difference of Convex Functions) 

Programming and DCA Revisited with DC Models of Real World Nonconvex 

Optimization Problems,” Annals of Operations Research, vol. 133, no. 1, pp. 23–46, 

2005. 

[15] M. Hata, "Empirical Formula for Propagation Loss in Land Mobile Radio 

Services," IEEE Transactions on Vehicular Technology, vol. 29, no. 3, pp. 317-325, 

1980. 

[16] European Union COST Action 231, "Digital mobile radio towards future 

generation systems: Final Report," 1999,  https://port

al.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId

=2430. 

[17] I. Siomina and D. Yuan, “Analysis of Cell Load Coupling for LTE Network 

Planning and Optimization,” IEEE Transactions on Wireless Communications, vol. 11, 

no. 6,  pp. 2287-2297, 2012. 

 

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2430
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2430
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2430

