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Executive summary 

 

Wireless networks have become a critical part of modern infrastructure, supporting 

industries such as transport, logistics, utilities, and manufacturing. As service types 
continue to grow and diversify, the demands placed on wireless networks have become 

increasingly complex and difficult to manage with traditional approaches. In particular, 

understanding and forecasting complex, high-dimensional traffic patterns — whether 
for individual services or aggregated groups — remains a significant challenge for 

future network planning and optimisation. 

The Open Radio Access Network (O-RAN) architecture is designed to introduce 

intelligence, flexibility, and openness into the management and optimisation of radio 

access networks (RANs)[1]. RAN Intelligent Controller (RIC) is a central component 
of the O-RAN architecture. There are two types of RIC defined by the O-RAN 

Alliance: Non-Real-Time RIC and Near-Real-Time RIC. Service-centric RAN 

optimisation applications for the O-RAN RIC are designed to enhance the performance 
of specific services (e.g., voice, video streaming, URLLC, eMBB, IoT) by dynamically 

adapting radio network behaviour to meet diverse service-level requirements[2]. These 

applications typically run as xApps in the Near-Real-Time RIC for timescales of 
10ms–1s, or as rApps in the Non-Real-Time RIC for longer-term optimisation and 

policy control. 

In this deliverable, we build upon the initial work completed in D1.1, where methods 

for spatial-temporal traffic forecasting and mobility prediction were developed using 

Artificial Intelligence (AI) techniques. Our goal in D3.1 is to extend these methods into 
practical evaluation: summarizing the main findings from D1.1, applying them to 

selected simulation scenarios, and laying the groundwork for network optimisation 

based on forecasted traffic patterns. 

We focus not only on identifying representative traffic profiles but also on 

understanding how these patterns can influence typical RAN deployment strategies. 
All simulations and preliminary optimisation studies are conducted using the Ranplan 

Professional software platform, ensuring a consistent and realistic evaluation 

environment. 

This report marks a step forward in the IPOSEE project’s aim to develop intelligent, 

proactive network optimisation strategies, by moving from theoretical development 

towards service-centric RAN optimisation applications for O-RAN RIC and their 

practical validation. 

 

 

 

 

 
 

 

                                            

[1] M. Polese, et al., “Understanding O-RAN: Architecture, interfaces, algorithms, security, and research 

challenges,” IEEE Communications Surveys & Tutorials, vol. 25, iss. 2, pp. 1376-1411, 2023. 
[2] P. Sroka, et al., “Policy-based traffic steering and load balancing in O-RAN-based vehicle-to-network 

communications,” IEEE Transactions on Vehicular Technology, vol. 73, iss. 7, pp. 9356-9369, 2024. 
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1. Introduction 

This deliverable, D3.1, is produced under Work Package 3 (WP3) of the IPOSEE 
project. It builds directly on the work completed in earlier stages, particularly the 

datasets, models, and methodologies developed in Deliverable D1.1, which focused on 

high-resolution wireless traffic and mobility forecasting with uncertainty 

quantification. Service-centric RAN optimisation in the O-RAN architecture ensures 
that the diverse and stringent requirements of next-generation applications (5G/6G) are 

met efficiently[ 3]. By combining real-time control via xApps and policy/AI-driven 

oversight via rApps, O-RAN RIC will enable programmable, intelligent, and service-

aware RANs. 

The purpose of D3.1 is to extend these developments towards practical evaluation. It 

summarizes the key methods and findings reported in D1.1, applies them to selected 

simulation cases designed to reflect realistic deployment scenarios, and explores 

preliminary approaches to network optimisation based on forecasted traffic patterns. 
Through this approach, D3.1 continues the technical progression initiated in WP1 and 

supports the broader goals of WP3 in enabling proactive, service-centric wireless 

network operations. 

This document is structured into three main parts: 

• A summary of the key methodologies, datasets, and results developed in D1.1, 
with a focus on their applicability to simulation and optimisation tasks. 

• A presentation and analysis of selected use cases, demonstrating how the 

forecasting and modelling techniques can be applied to evaluate network 

performance in practice. 
• A preliminary discussion of optimisation approaches based on forecasted traffic 

patterns, with further extensions to be finalized as the project progresses. 

By linking the initial research activities with application-driven evaluation and 

optimisation, D3.1 plays a key role in advancing the IPOSEE project towards achieving 

its overall objectives. 

1.1  Purpose of this document 

The purpose of this deliverable, D3.1, is to consolidate and extend the outcomes 

achieved during the initial phases of the IPOSEE project, particularly the work carried 

out under Work Package 1 (WP1) and documented in Deliverable D1.1. While D1.1 
focused on developing data-driven methods for forecasting wireless traffic and 

mobility patterns, D3.1 moves the work forward by applying these methods in practical 

simulation environments and preparing for optimisation activities under Work Package 

3 (WP3). 

                                            

[3] A. Lacava, et al., “Programmable and customized intelligence for traffic steering in 5G networks using 

open RAN architectures,” IEEE Transactions on Mobile Computing, vol. 23, iss. 4, pp. 2882-2897, 2024. 
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Specifically, this document serves to: 

• Summarize and highlight the key methodologies, datasets, and results 
established in D1.1, ensuring a consistent technical foundation for subsequent 

simulation and evaluation tasks. 

• Demonstrate the practical applicability of the developed forecasting and 

modelling techniques through the analysis of selected use cases, providing 
insights into network behaviour under different service and traffic conditions. 

• Set the groundwork for necessary further developments, particularly the 

optimisation strategies and decision-support tools that will be finalized in later 

stages of WP3. 

By achieving these objectives, D3.1 ensures continuity between early-stage research 

and the application-driven phases of the project, helping to bridge the gap between 

theoretical modelling and practical network optimisation. 

 

1.2  Document Structure 

This document is organized into the following main sections: 

• Section 2 – Summary of D1.1 Methodologies and Findings: This section 
provides a concise overview of the key methodologies, datasets, and results 

developed during D1.1. It focuses on their relevance to simulation and 

optimisation tasks, covering dataset preparation, environment identification, 

spatial-temporal traffic forecasting, and integration into network simulation 
tools. 

• Section 3 – Use Case Analysis: This section presents two selected simulation 

use cases. For each case, the network setup, simulation configuration, and 
performance evaluation are discussed, along with key insights into the practical 

application of the forecasting and modelling techniques. 

• Section 4 – Preliminary Optimisation Approach: This section introduces 
initial optimisation strategies informed by the forecasting and simulation results. 

It discusses how predictive traffic information can guide network deployment 

and optimisation decisions, providing a basis for further development of 

optimisation tools within WP3. 
• Section 5 – Further Work: This section outlines areas for future work, 

including potential extensions of the optimisation strategies and additional 

simulation studies that will be completed as the project progresses. 
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2. Summary of D1.1 Methodologies and Findings 

This section provides a concise yet structured summary of the key methodologies, 

datasets, and findings presented in Deliverable D1.1, with an emphasis on their 
relevance to the simulation and optimisation tasks addressed in the later stages of the 

IPOSEE project. 

The primary objective of D1.1 was to develop data-driven techniques for high-
resolution forecasting of wireless traffic and user mobility, with a particular focus on 

incorporating uncertainty quantification. This emphasis on uncertainty is critical to 

ensuring that the predictions are not only accurate in expectation, but also robust to 
outlier behaviours, context shifts, and sparse measurement conditions—all of which 

are common in real-world network environments. 

The outputs of D1.1 form the analytical foundation for the predictive simulation 

platform developed in WP3. The models, training pipelines, and data representations 

introduced in D1.1 are directly integrated into simulation workflows, enabling 

forecast-informed network planning, dynamic spectrum management, and resource 

optimisation strategies to be explored in Deliverables D3.1 and beyond. 

2.1 Methodologies Developed in D1.1 

Deliverable D1.1 focused on the development of data-driven methodologies designed 

to predict wireless traffic and mobility patterns with high spatial and temporal 
granularity. The overarching goal was to support proactive network optimisation by 

generating not only accurate traffic forecasts but also quantified uncertainty estimates, 

thereby enabling more informed and risk-aware decision-making processes in 

simulation and planning environments. 

The technical work in D1.1 was structured around four core components, which 
collectively support the pipeline from raw data ingestion to predictive inference and 

uncertainty quantification. These components are described in the following 

subsections. 

 

2.1.1 Data Collection and Preparation 

The first stage of methodology development focused on building a representative and 
reliable dataset ecosystem to support model training and evaluation. Multiple 

heterogeneous datasets were curated to reflect a wide range of urban environments, 

user mobility patterns, and network usage behaviours. These included: 

• Historical wireless traffic records, collected from diverse public available; 
• Mobility traces, capturing aggregate and fine-grained user movement patterns; 

• Environmental context data, such as building footprints, heights, land use 

classifications, and transportation infrastructure. 

To ensure consistency and generalizability across datasets, several standardized 

preprocessing techniques were applied: 

• Normalization was used to align feature scales across time and location 
dimensions, ensuring comparability between heterogeneous traffic indicators; 

• Data augmentation techniques—such as random perturbations, temporal 

resampling, and geographic jittering—were employed to increase dataset 
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diversity and reduce model overfitting to specific city layouts or population 

densities. 

This preprocessing pipeline resulted in a robust, high-variance dataset foundation 

suitable for training complex forecasting models, and ensured that the trained models 

could generalize across different network topologies and traffic regimes. 

2.1.2 Environment Identification and Classification 

Understanding the relationship between physical environments and traffic patterns was 
critical for enabling accurate and context-aware forecasting. To achieve this, high-

resolution satellite imagery was analysed using semantic segmentation techniques. 

These methods allowed the model to classify urban regions into functional categories 

such as: 

• Commercial zones (e.g., business districts, shopping centres), 

• Residential neighbourhoods, 

• Transportation hubs (e.g., train stations, airports, major intersections). 

This environmental classification layer was integrated into the prediction pipeline to 

inform the learning model of the semantic function of different urban zones, which is 
highly correlated with both traffic volume and temporal activity patterns. Figure 1 

shows an example of environment classification results, where different types of areas 

are visually distinguished to reflect their traffic generation characteristics. 

 

Figure 1. Environment type identification. 

By explicitly embedding environmental context into the forecasting process, the model 

could better learn and generalize spatial correlations between urban structure and 

observed network behaviour—laying the groundwork for spatially adaptive 

optimisation in later work packages. 

 

2.1.3 Spatial-Temporal Traffic Forecasting 

Building on the environment classification, models were developed to forecast traffic 

variations across both space and time. The modelling approach addressed spatial 
dependencies—how traffic in one area influences surrounding regions—and temporal 

dynamics such as daily and weekly usage cycles. The spatial dimension of traffic 

patterns was captured through clustering techniques applied to traffic distribution data, 
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as illustrated in Figure 2. This clustering helped identify areas with similar traffic 

characteristics, forming the basis for localized forecasting. 

 

Figure 2. Spatial traffic classification. 

Additionally, traffic clustering was refined using unsupervised learning methods to 

further group traffic behaviours into meaningful categories, as shown in Figure 3. 

 

Figure 3. Traffic clustering. 

Temporal analysis was also a critical component. Figure 4 presents typical daily traffic 

variation patterns observed in different environmental types, providing insights into 

peak and off-peak usage cycles. 

 

Figure 4. Temporal traffic analysis. 
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The forecasting models leveraged both historical traffic patterns and environmental 

context to anticipate future traffic states. Figure 5 shows an example of predicted 

traffic distributions across urban areas. 

 

Figure 5. Traffic predictions. 

Finally, Figure 6 provides a consolidated view of spatial-temporal traffic dynamics, 

highlighting how traffic intensity evolves throughout the day across different zones. 

 

Figure 6. Spatial-temporal traffic patterns. 

 

2.1.4 Uncertainty Quantification 

Given the inherent variability and unpredictability of wireless traffic—particularly in 

dynamic urban environments—it was essential to complement deterministic 
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with each estimate. To achieve this, D1.1 adopted a combination of Bayesian inference 
techniques and Monte Carlo dropout methods, both of which are widely used in 

probabilistic deep learning. These approaches allowed the forecasting models to 

generate confidence intervals around predicted values, rather than point estimates 

alone. The resulting uncertainty bounds provided valuable insights into: 

• The expected range of traffic values at a given time and location; 
• Areas with high prediction volatility, which may require conservative planning 

strategies; 

• Time windows with low variance, offering opportunities for aggressive 

spectrum reuse or optimisation. 

By integrating uncertainty into the forecasting pipeline, the model outputs became 

more actionable for downstream use in simulation, resource provisioning, and risk-

aware network design. This aligns with the broader IPOSEE objective of enabling 

proactive and adaptive network planning, particularly under conditions of incomplete 

or evolving information.  

In summary, uncertainty-aware predictions offer a more robust foundation for 

decision-making, empowering network designers to better anticipate and respond to 

fluctuations in traffic demand across heterogeneous deployment scenarios. 

 

2.2 Key Findings in D1.1 

The work carried out in D1.1 produced several key insights that have directly shaped 

the design and priorities of subsequent simulation and optimisation activities in WP3. 

These findings confirmed the importance of spatial context, temporal regularity, and 

predictive robustness in building practical tools for intelligent network management. 

The most influential findings are outlined below. 

2.2.1 Environment Classification Brings Practical Benefits for Traffic Modeling 

One of the first and most impactful conclusions from D1.1 was that semantic 

environment classification significantly enhances the accuracy and realism of traffic 
prediction models. By applying semantic segmentation to satellite imagery and other 

geospatial data, urban areas were automatically divided into functional categories such 

as: 

• Commercial districts, 

• Residential neighbourhoods, 

• Transportation hubs. 

Each of these categories is associated with distinct traffic behaviours, usage patterns, 

and peak-load signatures. Rather than treating the urban landscape as a homogeneous 

prediction surface, incorporating these distinctions enabled the forecasting models to 
adopt a context-aware formulation. For example, traffic patterns in commercial zones 

exhibited sharp, cyclical peaks aligned with business hours, while residential areas 

showed a more gradual increase in activity during the evening hours. This 

environment-aware modelling approach allowed spatial forecasting methods to move 
beyond generic assumptions, yielding stronger alignment with real-world usage and 

enabling more reliable resource planning. 
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2.2.2 Spatial-Temporal Forecasting Models Capture Real Usage Patterns 

Another major finding from D1.1 was that spatial-temporal forecasting models, when 

properly trained and calibrated, are capable of reliably capturing realistic traffic 

dynamics. These models account for: 

• Spatial dependencies (e.g., how neighbouring areas influence local demand), 

• Temporal evolution (e.g., daily peaks, weekly cycles, seasonal changes). 

Testing results showed that the forecasting models successfully anticipated traffic 
surges linked to recurring behavioural patterns—such as morning and evening 

commutes, lunchtime congestion, and weekend retail activity. In addition, they could 

identify off-peak periods, which are particularly useful for guiding energy-saving or 

low-priority resource allocation strategies. 

While some prediction noise remained in highly dynamic or mixed-use zones, the 

models proved robust enough to support proactive and adaptive optimisation, a central 

objective of the IPOSEE framework. 

These findings reinforce the notion that forecasting is not just a descriptive tool, but a 

key enabler of real-time decision-making in modern wireless networks. 

2.2.3 Uncertainty Estimation Adds Meaningful Insights 

Incorporating uncertainty estimation into the forecasting process proved to be far more 

than a theoretical enhancement—it delivered practical planning value. By producing 

not only point forecasts but also confidence intervals, the models provided insight into 
the reliability of their own predictions. This enabled network planners to make more 

informed decisions about where forecasts could be confidently trusted, and where more 

flexible, resilient designs might be required. 

This was particularly important in environments such as transport hubs, where traffic 
volumes are subject to sharp, irregular fluctuations driven by external factors like 

weather, flight schedules, or public events. In these cases, the ability to anticipate not 

just the average demand but also its expected variability made a direct impact on the 

risk profile of deployment strategies. 

By quantifying uncertainty, the forecasting framework transitioned from a static 
predictive tool into a strategic planning instrument, enabling better alignment between 

capacity provisioning and demand volatility. This capability supports a more risk-

aware, adaptive approach to network design—central to the IPOSEE project's vision 

of proactive service-centric RAN optimisation. 

2.2.4 Environment-Specific Traffic Behaviour Supports Tailored Deployment 

Another critical insight from D1.1 was that environment-specific traffic behaviours are 

not merely academic observations—they have direct operational implications for 
wireless network deployment. Traffic patterns were found to vary significantly across 

different types of environments: 

• Commercial zones exhibited sharp daytime peaks and quiet evenings; 

• Residential areas followed slower build-up and evening-dominant usage 

curves; 
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• Transportation nodes showed high burstiness, often disconnected from time-

of-day norms. 

Recognizing these distinct patterns early in the planning process allowed for far more 

efficient network deployment. Rather than applying a uniform planning strategy across 

the entire urban area, network resources could be allocated adaptively, based on the 

actual usage rhythms and service needs of each environment type. 

This observation supports the broader goal of service-centric RAN optimisation 
applications, which moves away from rigid, one-size-fits-all rules toward intelligent, 

environment-aware optimisation in O-RAN. It also laid the groundwork for the 

functional zoning approach later applied in WP3 simulation studies, where deployment 
and configuration decisions are directly linked to the spatial semantics of traffic 

behaviour. 
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3. Evaluation of Forecast-Driven Simulation Environment in an Urban Scenario 

Building upon the forecasting methodologies and findings established in Deliverable 

D1.1, this section presents the design, calibration, and evaluation of a simulation 

environment tailored to support forecast-informed wireless network planning. The 

evaluation is conducted within a realistic urban scenario, designed to emulate the 

structural and mobility complexities that are typical in high-density European cities. 

The overarching goal is to validate whether the simulation platform developed in WP3 

can meaningfully incorporate traffic and mobility predictions from WP1, and whether 

it can serve as a reliable digital testbed for forecast-guided optimisation strategies. By 
grounding simulation behaviour in both empirical measurements and environmental 

structure, we aim to reduce the performance gap between theoretical planning and real-

world deployment outcomes. 

3.1 Bath Urban Scenario: Calibration and Validation of Simulation 

Environment 

As a first step toward building a trustworthy simulation framework, we conducted a 

scenario-based validation exercise in the city centre of Bath, United Kingdom. This 

location was chosen for its representative urban characteristics, including narrow 
historical streets, dense mid-rise buildings, and non-uniform elevation profiles—all of 

which contribute to complex wireless propagation conditions. 

The purpose of this case study is twofold: 

1. To verify the accuracy of the propagation models embedded in the WP3 

simulation platform against real-world signal measurements; 
2. To establish a calibrated, high-fidelity baseline environment that can later be 

used to test forecast-driven resource planning and network optimisation. 

This section details the measurement campaign, calibration steps, and statistical 

validation of the radio model used. The resulting propagation engine, once calibrated, 

enables simulations that faithfully reflect the structural and environmental features of 
realistic urban settings, thereby supporting meaningful evaluation of the predictive 

strategies developed in the IPOSEE project 

3.1.1 Motivation and Role 

One of the key objectives of the IPOSEE project is to establish an intelligent, 
prediction-aware framework for wireless network optimisation. At the heart of this 

framework lies a suite of high-resolution traffic forecasting and uncertainty 

quantification models developed under Work Package 1 (WP1), as detailed in 
Deliverable D1.1. These models encompass environment-aware traffic density 

estimation, spatial-temporal mobility clustering, and probabilistic demand modelling. 

To ensure that these predictive models can be effectively leveraged in practical network 

planning and decision-making, Work Package 3 (WP3) is tasked with building a 

simulation and optimisation platform capable of responding to forecast inputs. 
However, the reliability of any such simulation platform critically depends on the 

accuracy of its underlying radio propagation models. If the predicted path loss is 

inaccurate, then—even when driven by precise traffic forecasts—the simulation 

outputs may be misleading or untrustworthy. 
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To address this challenge, we carried out a calibration and validation exercise in a 

realistic urban environment. The objectives of this exercise were to: 

• Assess the accuracy of simulation models against real-world measurement data; 

• Calibrate ray-tracing parameters to better reflect actual urban propagation 

characteristics; 

• Ensure the simulation platform accurately represents the structural and 
environmental complexity of dense urban areas; 

• Establish a reliable foundation for the forecast-driven optimisation strategies to 

be developed in subsequent IPOSEE deliverables. 

3.1.2 Measurement Campaign and Scenario Setup 

The selected validation area is located in the city centre of Bath, United Kingdom, 

which presents a complex and diverse urban propagation environment. This area was 

chosen due to its rich combination of physical characteristics, including: 

• Narrow historical streets and open plazas; 
• Dense mid-rise building clusters constructed with a variety of materials; 

• Elevation variations caused by the city's naturally hilly terrain. 

To replicate realistic small cell deployment conditions, 16 pico base stations were 

installed on street-level lampposts at a height of 4 meters. Each base station was 

equipped with omnidirectional antennas configured for 4×4 MIMO operation. The 
system operated in the 3.7 GHz band (n77) with a channel bandwidth of 100 MHz. The 

spatial configuration of the base stations, along with the coverage area for simulation 

and measurement, is illustrated in Figure 7. 

 
Figure 7. Bath urban measurement scenario with 16 picocell deployments using 

omnidirectional antennas on 4-meter poles. 

(a) Network deployment

(b) 3D view
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Receiver locations were carefully distributed throughout the measurement area, 

ensuring broad coverage of both line-of-sight (LOS) and non-line-of-sight (NLOS) 

regions. These receiver points were selected to capture the full range of propagation 

conditions, from open, unobstructed streets to deep urban canyons and heavily 

shadowed corners. Signal strength data were collected through on-site measurements 
and subsequently compared to predicted values generated by the default (uncalibrated) 

ray-tracing propagation model within the WP3 simulation platform. This comparative 

analysis served as the basis for the model calibration process, which is described in the 

following subsection. 

3.1.3 Performance Across Deployment Scenarios 

Using the default ray-tracing configuration, the simulation platform produced path loss 

predictions which were then systematically compared against the measured signal 
strength data. As illustrated in Figure 8, the discrepancies between simulated and 

empirical values were significant—especially in NLOS environments, such as 

alleyways, narrow side streets, and building-shielded corners. The mean absolute error 

exceeded 9 dB, and the standard deviation was unacceptably high, indicating that the 
default model failed to accurately capture the propagation dynamics of the Bath urban 

scenario. 

 
Figure 8. Comparison between simulated and measured path loss using default parameters, 

showing high variance and location-dependent prediction errors. 

This outcome underscored the limitations of generic propagation assumptions when 

applied to structurally diverse environments. As emphasized in Deliverable D1.1, 

accurate wireless simulation requires the integration of environment-specific 
knowledge, particularly when historical or non-standard construction materials are 

present. In this case, the default wall penetration losses, diffraction losses, and surface 

(a) Measurement results

(b) Simulation results
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reflection coefficients were not suitable for the stone façades, arched passages, and 
mixed-material building envelopes that characterize the Bath city centre. These 

findings clearly justified the need for a dedicated calibration process, which aimed to 

align simulation predictions with actual urban signal behaviour. The calibration 

methodology and resulting improvements are described in the next subsection. 

3.1.4 Propagation Model Calibration Procedure 

To improve prediction accuracy, a targeted calibration of the ray-tracing engine was 

carried out. The following key adjustments were implemented: 

• Increased wall penetration loss to reflect the presence of thick stone structures 

commonly found in Bath’s historical buildings; 
• Reduced reflection loss in close-spaced building facades to better model 

multipath persistence in narrow streets; 

• Adjusted diffraction thresholds to capture the effects of street-canyon 
propagation more accurately; 

• Refined receiver sensitivity settings to better reflect practical detection limits in 

typical user equipment. 

These modifications were informed by WP1’s environmental classification outputs, 

which were generated through supervised learning models trained on datasets of 
building footprints, elevations, and material attributes. This approach enabled the 

simulation platform to contextualize propagation behaviour according to locally 

identified environmental classes, resulting in a more precise calibration per zone type. 
The updated simulation output is presented in Figure 9, where the predicted coverage 

map exhibits significantly improved alignment with real-world measurements across 

diverse urban conditions. 

 

Figure 9. Calibrated propagation engine output showing improved alignment with real-world 

measurements in urban Bath. 

This calibration phase substantially reduced both over- and under-prediction of path 

loss, particularly in NLOS conditions and transition areas between open squares and 
dense building corridors. The result is a more reliable and consistent baseline for 

simulation-based evaluation and forecast-driven network planning activities in WP3. 

(a) Path loss parameters before calibration (b) Path loss parameters after calibration
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3.1.5 Statistical Validation and Integration into WP3 Platform 

A statistical evaluation of simulation accuracy before and after calibration is presented 

in Figure 10. The results reveal a significant improvement in model performance: the 

average prediction error was reduced from +9.44 dB to −1.85 dB, while the standard 
deviation dropped from 64.10 dB to 13.05 dB. These reductions reflect a substantial 

gain in both accuracy and stability, directly supporting the quality assurance of the 

simulation engine employed in WP3. 

 

Figure 10. Statistical comparison of prediction error before and after propagation model  

calibration. 

The validated model resulting from this calibration process will now serve as the radio 

propagation foundation for upcoming simulation scenarios under WP3. These 

scenarios will explore forecast-informed resource allocation, spectrum reuse strategies, 

and deployment optimisation frameworks. While the current deliverable does not 
implement full optimisation loops, it provides a critical enabling step toward that goal 

by ensuring the simulation platform can meaningfully respond to high-resolution input 

data. Moreover, this process exemplifies how WP1 outputs—particularly the 
environmental classification models and probabilistic traffic forecasts—can be 

systematically used to inform and refine the simulation environment, thereby 

enhancing the fidelity and credibility of subsequent prediction-driven evaluations. 

3.2 Airport Scenario: UWB and Mobile Network Coexistence at Heathrow 

While Section 3.1 focused on validating the simulation platform in a conventional 

urban deployment setting, this section demonstrates how the forecasting capabilities 

developed in WP1 can be extended beyond network deployment to address more 

complex challenges—specifically, spectrum coexistence between heterogeneous 

wireless systems. 

(a) Error statistic before calibration (b) Error statistic after calibration
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With increasing pressure on mid- and high-band spectrum resources, technologies such 
as 5G New Radio (NR) and Ultra-Wideband (UWB) radar systems are beginning to 

share frequency ranges, especially around the upper 6 GHz band. This creates practical 

risks of mutual interference, particularly in high-density environments like airports, 

where multiple critical systems operate in parallel. 

Set at London Heathrow Airport, this scenario illustrates how traffic prediction, 

environmental awareness, and calibrated propagation models can be combined to: 

• Proactively identify interference-prone regions before deployment; 

• Define dynamic protection zones for sensitive UWB systems based on 

forecasted user flows; 
• And inform scheduling and coordination strategies to enable safe and efficient 

spectrum sharing. 

By integrating this scenario into the IPOSEE framework, we demonstrate that the 

project’s forecasting capabilities are not limited to traditional mobile network planning, 

but also serve as a powerful tool for predictive interference management and multi-
system coordination. This further highlights the practical value of the IPOSEE 

methodology in supporting future wireless ecosystems, where cross-system 

coexistence will be increasingly essential. 

3.2.1 Scenario Description and Setup 

This scenario evaluates spectrum coexistence between UWB radar systems and 5G 

mobile networks at London Heathrow Airport, one of the most complex and high-

density wireless environments in the United Kingdom. In this context, UWB systems 
represent law enforcement, infrastructure monitoring, or airport security sensors, 

operating in the upper 6 GHz band, while the mobile network comprises a 5G NR 

deployment delivering continuous coverage across passenger terminals, aprons, and 

access routes. 

The simulation models incorporate the following environmental and deployment 

elements: 

• A flat airport terrain with large open surfaces, metallic structures, and strong 

structural obstructions; 

• Three UWB radar stations positioned near critical buildings or high-traffic 
transit zones; 

• Co-channel coexistence with 5G NR base stations operating in partially 

overlapping frequency bands; 

• Signal interactions governed by spectrum sensing-based coexistence rules and 

strict interference protection thresholds. 

The simulation layout is illustrated in Figure 11, which highlights the placement of 

UWB radar systems, 5G base stations, and key structural elements within the airport 

environment. 
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Figure 11. Simulation layout of Heathrow Airport with UWB radar stations and mobile 

infrastructure for coexistence analysis. 

In this scenario, the UWB systems are modelled according to standard compliance 

specifications: they operate over a 500 MHz bandwidth with very low transmit power 

spectral density (PSD). The maximum PSD is limited to −41.3 dBm/MHz, aligning 
with international regulatory frameworks for short-range device operation (e.g., ITU-

R and ETSI standards). These conditions create a challenging coexistence environment, 

particularly because UWB signals—despite their low power—occupy wide spectral 
bands that may overlap with mobile uplink or downlink subcarriers. The aim of the 

simulation is to analyse how well spectrum sensing mechanisms and interference 

management thresholds protect both system types under realistic deployment 

constraints. 

3.2.2 Forecasting-Based Protection Modelling 

To evaluate realistic interference risks and support proactive spectrum planning, we 

employed a forecast-driven modelling approach similar to that described in Section 3.1. 

This approach leverages both environmental and user behaviour predictions to 
determine context-aware protection zones around sensitive UWB devices. Specifically, 

we applied the following steps: 

• Environmental classification was used to distinguish between obstructed and 

open-space areas within the airport environment, based on structural layouts and 
material datasets; 

• Forecasted traffic density maps were integrated to simulate typical user 

movement flows across terminals, boarding areas, and service corridors; 

• Reciprocal path loss estimation—following the methodology outlined in 
Deliverable D1.1—was used to calculate dynamic protection radii around UWB 

stations, accounting for varying propagation and occupancy conditions. 

Using the known EIRP of 5G NR base stations (58.7 dBm) and the interference 

threshold for UWB reception (−116.6 dBm), we derived a required protection path loss 
threshold of 175.3 dB. This means that, under typical propagation assumptions, mobile 

transmitters must be kept at least 150 meters away from UWB receivers to prevent 

harmful interference in most cases. The spatial pattern of these constraints is visualized 

in Figure 12, which presents a UWB path loss heatmap overlaid on the simulated 
airport layout. The results clearly show how architectural features—such as terminal 

walls, hangars, and vehicle corridors—introduce strong variations in propagation, 



Project Acronym:  IPOSEE 

Version 1.0 

Horizon Europe MSCA 

Grant Agreement No. 101086219 Project Coordinator: Uppsala University 

 

  
22/38 

effectively reshaping the protection zones from simple circles into complex, structure-

aware contours. 

 

Figure 12. UWB path loss heatmap at Heathrow, illustrating protection zones based on 

interference threshold modelling. 

This forecasting-based approach enables the proactive definition of exclusion zones, 

spectrum reuse windows, and dynamic guard-band enforcement strategies. By aligning 

protection modeling with real-world environmental structure and traffic flows, the 
system can move beyond static constraints and toward context-aware, predictive 

coexistence management. 

3.2.3 Network Simulation and Results 

The simulation assessed coexistence performance under dynamic spectrum sharing 
rules, where UWB systems and 5G mobile networks operate in overlapping frequency 

bands but rely on RSSI-based sensing mechanisms to avoid harmful interference. The 

goal was to validate whether real-time environmental awareness and traffic sensitivity 
can enable safe and efficient spectrum reuse in a high-density setting such as an 

international airport. 

Key findings from the simulation include: 

• Elevated interference risk in areas near UWB radar stations, particularly when 

user hotspots dynamically shift into overlap zones; 

• Significant uplink performance degradation in 5G NR cells when UWB beam 
paths align with mobile base station coverage sectors, due to receiver-side 

desensitization; 

• Strong spatial variation in coexistence behaviour, depending on local terminal 

geometry, construction materials, and signal reflection characteristics. 

To quantify the impact of shared-band coordination, Figure 13 compares system-level 

throughput under two configurations: 

i) Single-band operation using only the conventional 3.5 GHz mid-band spectrum; 

Protection distance: 150m
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ii) Dual-band operation that adds the upper 6 GHz band under sensing-based 

coordination constraints. 

In the second case, the simulation shows a throughput increase of up to 970.5 Mbps 

per cell, confirming that opportunistic access to high-frequency spectrum—when 

governed by real-time sensing—can provide substantial capacity gains without 

violating UWB protection thresholds. 

 

Figure 13. Throughput improvement with spectrum sharing between 5G and UWB at Heathrow 

Airport. Sensing-based exclusion maintains UWB protection while increasing network capacity. 

These results also provide strong empirical support for the proposition in Deliverable 

D1.1: That traffic-aware and interference-aware scheduling mechanisms enable fine-

grained coexistence, even in dense, mission-critical environments such as airports. The 
combination of forecast-driven traffic modelling and sensing-guided coordination 

offers a promising path forward for intelligent spectrum reuse. 

3.2.4 Insights and Observations 

The use case demonstrates that spectrum sharing between UWB and 5G mobile 
networks is technically feasible, provided that coexistence conditions are intelligently 

managed and context-aware adjustments are applied. The application of forecasting 

tools—particularly those capable of modelling environmental structure and dynamic 

user mobility—plays a pivotal role in defining adaptive protection zones that safeguard 
UWB system performance while enabling mobile networks to reclaim underutilized 

spectrum for high-capacity service delivery. 

One of the core challenges in this scenario stems from broad-area, multipoint 

interference, driven by fluctuating user density and mobility within a dense and 
operationally complex environment like an airport. Such dynamics require continuous 

spatial and temporal adaptation, which can only be effectively achieved through 

forecast-informed modelling and simulation. 

The results highlight several key insights: 

• The importance of mobility-aware interference mapping, particularly in 

environments with high user churn such as airports; 
• The need for proactive, site-wide spectrum reuse policies, guided by accurate 

traffic prediction and calibrated simulation; 

(a) throughput of 3.5 GHz (b) throughput of upper 6 GHz
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• The practical viability of prediction-guided spectrum sensing as a scalable and 
low-overhead approach to maintaining performance in multi-service 

environments. 

This evaluation strengthens the case for applying forecast-driven intelligence to future 

wireless system coordination and sets the stage for the optimisation strategies that will 

be developed in the subsequent sections of this deliverable. 
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4. Forecast-Guided Optimisation Framework 

With a validated simulation environment in place and high-resolution traffic forecasts 

derived from WP1, this section introduces the conceptual framework for applying 

forecast-guided optimisation to wireless network planning. The goal is to demonstrate 

how predictive information—particularly traffic demand patterns and environmental 
classifications—can inform adaptive resource allocation strategies that outperform 

static or generic approaches. 

Rather than focusing on complex algorithmic implementations, this section emphasizes 

the logic and structure of the optimisation process. It builds upon the spatial-temporal 
insights, environmental semantics, and uncertainty estimates developed in D1.1, and 

applies them to a practical urban deployment scenario introduced in Section 3.1. 

Key motivations for introducing forecast-guided optimisation include: 

• The spatial heterogeneity of user demand across different urban regions (e.g., 

business districts vs. leisure areas); 

• The temporal volatility of usage patterns (e.g., peak hours, weekends, special 
events); 

• The presence of performance trade-offs between throughput, latency, energy 

efficiency, and interference. 

4.1 Motivation and Objectives 

As wireless networks continue to evolve in complexity, density, and service diversity, 

the limitations of uniform, static network configurations become increasingly evident. 

Service providers face the challenge of adapting radio access networks (RANs) to 

highly variable and spatially localized traffic patterns, which fluctuate in both time and 

space due to shifts in user behaviour, mobility, and application demand. 

Section 3 of this report validated a calibrated simulation environment using field 

measurements from the city of Bath, establishing a trustworthy baseline for 

performance evaluation. Building on that foundation, we now demonstrate how 

forecast-informed functional zoning—the partitioning of the simulation area into 
semantically distinct regions based on predicted traffic behaviour—can guide the 

adjustment of deployment parameters to better match localized service requirements. 

This approach acknowledges a fundamental observation: urban areas are not 

homogenous, and neither are their wireless demands. Business districts, leisure zones, 
and transit corridors exhibit markedly different traffic profiles, usage timeframes, and 

reliability expectations. Applying a single configuration strategy across all areas results 

in inefficiencies such as underutilization in low-load zones or congestion in peak-

demand hotspots. 

Our goal in this section is to show that even without implementing advanced 
optimisation algorithms, the use of forecasting data to inform simulation zoning and 

configuration decisions already delivers measurable benefits. This establishes both the 

relevance and feasibility of predictive optimisation workflows, and creates a strong 
foundation for more sophisticated algorithmic development in subsequent stages of 

WP3. 
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4.2 Forecast-Informed Functional Zoning in Simulation 

To bridge the gap between high-resolution traffic forecasting and adaptive network 

deployment, we introduced a forecast-guided functional zoning approach within the 

calibrated urban scenario of Bath. This step is critical to operationalizing the predictive 

outputs generated in WP1. Rather than treating the simulation environment as spatially 
homogeneous, we leverage prior knowledge of traffic behaviour—derived from 

clustering, heatmap analysis, and mobility modelling—to segment the city into 

functionally distinct sub-areas, each associated with unique traffic characteristics and 

network requirements. 

Figure 14 Functional zoning of the Bath urban scenario. The blue area represents the business 

district (work zone), the green area denotes leisure and commercial activity zones, and the 

yellow area corresponds to high-mobility transit corridors. illustrates the resulting functional 

zoning map. The delineation is based on a combination of predicted traffic intensity, 

spatial usage patterns, and environmental context. Specifically: 

• Blue Zone – Business District: This area encompasses the dense grid of office 
buildings, administrative centres, and service facilities located in the city’s core. 

Predictive models from WP1 indicate that this region consistently exhibits high 

uplink-dominant traffic during standard working hours (typically 9:00–17:00). 

Data usage patterns are shaped by a large number of stationary users engaged in 
cloud applications, video conferencing, and document uploads. Traffic 

behaviour is both predictable and periodic, making the zone a prime candidate 

for proactive scheduling and capacity provisioning. 
• Green Zone – Leisure and Commercial Area: Situated to the west and 

southwest of the city centre, this zone includes parks, pedestrian commercial 

streets, shopping plazas, and dining establishments. WP1 traffic forecasting 

shows this region experiences moderate but highly variable downlink-heavy 
demand, with peaks occurring between 17:00 and 22:00, especially on weekends. 

The nature of user activity is content consumption-oriented, such as video 

streaming and social media usage. While traffic is lighter during business hours, 
the region requires capacity ramp-up during off-peak hours. The variance in 

predicted traffic also suggests the need for dynamic resource scaling or standby 

provisioning. 
• Yellow Zone – Transit Corridor: Extending across the southeastern portion of 

the map, this zone covers bus stops, road intersections, train station accessways, 

and high-mobility pedestrian flows. It is characterized by short-duration, high-

intensity traffic bursts, typically occurring around morning (7:00–9:00) and 
evening (17:00–19:00) commuting windows. Forecasts show this zone has the 

highest degree of traffic uncertainty due to rapid user churn, frequent handovers, 

and heterogeneous device usage. Network planning in this area demands 
robustness against volatility, which may involve redundancy strategies or 

conservative reuse patterns. 
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Figure 14 Functional zoning of the Bath urban scenario. The blue area represents the business 

district (work zone), the green area denotes leisure and commercial activity zones, and the 

yellow area corresponds to high-mobility transit corridors. 

This zoning process was not manually defined but was informed by quantitative traffic 
behaviour modelling described in Section 2. By integrating outputs from hotspot 

detection, traffic clustering, and temporal variation analysis, we ensured that each zone 

was grounded in both physical context and predictive traffic dynamics. 

The zoning results serve two main purposes: 

i) They provide a semantic structure for mapping forecast data to actionable 
network configurations. 

ii) They enable the simulation platform to apply differentiated deployment or 

scheduling strategies, ultimately improving communication service quality and 

resource efficiency. 

In the following section, we evaluate the impact of this forecast-aware zoning by 
comparing simulation results before and after the application of zone-specific 

configurations. 

 

4.3 Comparative Simulation Results 

To substantiate the practical value of forecast-informed functional zoning, this section 

presents a comprehensive comparative analysis of simulation outcomes under different 
network configuration strategies. While Section 4.2 established the conceptual and 

methodological basis for dividing the Bath urban area into semantically meaningful 

zones—namely business, leisure, and transit areas—this section moves forward to 

assess the actual performance implications of those zoning decisions by quantifying 
changes in throughput distributions, coverage quality, and system-level behaviour 

under calibrated simulation scenarios. 

Rather than deploying complex black-box optimisation algorithms, which are reserved 

for later stages of the project, the approach taken here focuses on explicitly 
implementing intuitive, zone-specific configurations guided by the traffic forecasting 
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outputs from WP1. This decision allows us to observe how minor, analytically 
justifiable adjustments—such as Time Division Duplex (TDD) frame selection, power 

tuning, or resource allocation priorities—can translate into significant performance 

gains, even before formal optimisation routines are introduced. 

This comparative evaluation provides a critical bridge between the forecasting models 

of WP1 and the optimisation framework to be developed in WP3. It demonstrates how 
the integration of predictive intelligence into simulation platforms can serve as a 

precursor to intelligent decision-making and dynamic network adaptation. The analysis 

unfolds in the following three parts: 

i) System-wide comparison between baseline and forecast-guided configurations 
in terms of uplink and downlink throughput distributions; 

ii) Zonal analysis examining localized performance improvements across business, 

transit, and leisure areas; 

iii) Temporal adaptation evaluation, where a forecast-aware TDD frame is 

introduced to further enhance downlink responsiveness in high-demand zones. 

4.3.1 Baseline vs Forecast-Guided Simulation 

To establish a clear and objective reference for evaluating the impact of forecast-driven 

adjustments, we first conducted a system-wide comparison between two 

configurations applied to the calibrated Bath urban simulation model: 

• Baseline Configuration: A homogeneous deployment strategy, where all 

simulation parameters—such as scheduling weights, TDD frame structure, 

antenna configurations, and cell priorities—remain fixed across the entire 
simulation area. This represents a legacy, one-size-fits-all approach that does 

not incorporate contextual awareness of spatial or temporal traffic variations. 

• Forecast-Guided Configuration: A heterogeneous strategy in which selected 

simulation parameters are locally adjusted based on the predicted traffic 
intensity, uplink/downlink ratio, and user mobility profile for each zone. For 

instance, in the business zone, uplink scheduling weights are increased and small 

cell placement is aligned with predicted user hotspots. In leisure areas, downlink 
resource blocks are expanded, and in transit zones, coverage redundancy is 

enhanced to handle bursty and uncertain traffic events. 

Simulation results show that these seemingly modest adaptations, when applied 

systematically according to forecast data, generate a meaningful uplift in user 

performance metrics. Specifically, we compare Effective User Throughput (uplink and 

downlink) distributions across the entire simulation area under both configurations. 

As illustrated in Figure 15, each subfigure visualizes the signal distribution of uplink 

throughput across the target area, under two different configurations. The left-hand 

map, representing the baseline setup, reveals substantial regions with limited uplink 
performance, especially around traffic-congested zones and coverage edges. These 

bottlenecks are clearly visible as darker or underperforming patches in the map. In 

contrast, the right-hand map, reflecting the forecast-guided configuration, shows a 
more balanced and expanded distribution of uplink throughput across the city. Areas 

that previously suffered from poor performance exhibit improved signal quality and 

user experience. This spatial shift suggests that prediction-informed resource allocation 

can help relieve uplink congestion and enhance system responsiveness. 
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（a）Forecast                                                    (b) Optimisation 

Figure 15.  Signal Distribution of Effective User Throughput (Uplink) under baseline vs 

forecast-guided configuration.  

A similar improvement is observed in  Figure 16 which presents the signal 
distribution of downlink throughput. Under the baseline configuration (left), several 

high-demand zones appear under-provisioned, with visible clusters of suboptimal 

performance. After forecast-guided adjustments (right), these zones exhibit clear gains 
in downlink capacity, with improved coverage uniformity and expansion of high-

throughput regions. The contrast between the two maps demonstrates the effectiveness 

of using traffic forecasts to guide downlink scheduling and spectrum usage, especially 

in areas with time-varying demand profiles. 

 

    

（a）Forecast                                                    (b) Optimisation 

Figure 16. Signal Distribution of Effective User Throughput (Downlink) under baseline vs 

forecast-guided configuration. 

From this system-level view, we can conclude that forecast-informed configuration 

policies—though lightweight and manually crafted—deliver measurable 

improvements in network performance and user experience. These results not only 

justify the relevance of WP1’s forecasting work in applied settings but also build a 
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strong case for developing more formal optimisation strategies in the next phase of 

WP3. 

4.3.2 Zonal Analysis of Forecast-Guided Optimisation 

To complement the system-wide assessment, this section presents a detailed zonal-

level evaluation of the forecast-guided optimisation strategy. By analysing each 
functional zone—business, transit, and leisure—we assess how targeted configurations 

based on traffic prediction can enhance network performance in a more granular and 

context-aware manner. As defined in Section 4.2, each zone exhibits a distinct pattern 

of wireless traffic and user behaviour, and thus benefits from tailored configurations 
that align with its dominant service demand. In this evaluation, we compare the 

distribution of Effective User Throughput (uplink and downlink) under two conditions: 

(1) the forecast-based configuration, where spatial zoning guides traffic-aware 
parameter adjustment, and (2) the optimized configuration, where minor refinements—

such as antenna tilts, power budgets, or load thresholds—are further tuned to improve 

local performance. We use a consistent simulation environment across all comparisons, 

with all results derived from the calibrated Bath urban scenario introduced earlier. 

(a) Business Zone 

In the business zone (central Bath), the traffic profile is dominated by steady uplink 
demands during working hours—e.g., cloud sync, teleconferencing, and file uploads. 

The forecast-based configuration prioritizes uplink scheduling, improves signal 

coverage at the building edge, and applies a modest TDD bias to support uplink 
transmission. As shown in Figure 17, the forecast-guided configuration already shifts 

a substantial portion of users out of the lowest throughput bin (<10 Mbps), but a further 

10–15% uplift in the 10–25 Mbps group is observed after optimisation, indicating that 

even small physical-layer or MAC-layer enhancements can compound the benefits of 

accurate prediction. 

  

（a）Forecast                                                    (b) Optimisation 

Figure 17. Effective User Throughput (uplink) in the business zone: forecast-guided 

configuration versus optimisation results. 

 

For the downlink, which is secondary in this zone, forecast-based provisioning 

provides stability without over-provisioning. Figure 18 shows that optimisation 

marginally improves high-end throughput without significantly altering the 

distribution—an efficient outcome that reflects resource prioritization elsewhere. 
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（a）Forecast                                                    (b) Optimisation 

Figure 18. Effective User Throughput (downlink) in the business zone: forecast-guided 

configuration vs optimisation results. 

(2) Transit Zone 

The transit zone spans areas near bus stops, train stations, and pedestrian walkways. 
Unlike the business zone, this region is characterized by short-duration, high-intensity 

bursts of traffic, and a relatively high degree of temporal and spatial uncertainty. 

To address these conditions, the forecast-guided configuration applied more 

conservative reuse patterns, increased signal redundancy, and slightly lower cell-load 
thresholds to minimize congestion during sudden user influxes. Figures 4.3d and 4.3g 

show the resulting improvements in uplink and downlink throughput distributions, 

respectively. 

In the uplink case (Error! Reference source not found.), more users move out of the 1

–10 Mbps category, and the average throughput shifts upward modestly. For downlink 
(Error! Reference source not found.), the distribution shows a similar uplift, with 

reduced concentration in the lowest bin and increased representation in the [10, 25] 

Mbps group. 

 

（a）Forecast                                                    (b) Optimisation 
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Figure 19. Effective User Throughput (uplink) in the transit zone: forecast-guided 

configuration vs optimisation results. 

 

（a）Forecast                                                    (b) Optimisation 

Figure 20. Effective User Throughput (dowlink) in the transit zone: forecast-guided 

configuration vs optimisation results. 

These results suggest that even in highly dynamic environments, forecast-driven 

resource moderation and spatial tuning can enhance robustness and fairness, 

minimizing performance degradation during demand surges. 

(3) Leisure Zone 

The leisure zone, located primarily in the west and southwest areas, contains shopping 

malls, restaurants, parks, and other recreational hotspots. As established in WP1, this 

zone sees intense downlink demand during late afternoons and evenings, fuelled by 

video streaming, social media, and other content-heavy services. 

Accordingly, the forecast-guided configuration allocates additional downlink 

resources, increases downlink scheduling weight, and optimises small cell placement 

to match usage hotspots. Figures 21 (uplink) and 22 (downlink) illustrate the resulting 

performance changes. 

While uplink throughput (Figure 21(b)) shows only a minor improvement, the 
downlink results (Figure 22(b)) demonstrate a marked enhancement: More users shift 

from the lowest bin ([1, 10] Mbps) into the middle tiers, and the tail of the distribution 

stretches into the [25, 50] Mbps range. 

 

（a）Forecast                                                    (b) Optimisation 
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Figure 21. Effective User Throughput (uplink) in the leisure zone: forecast-guided vs 

optimisation. 

 

（a）Forecast                                                    (b) Optimisation 

Figure 22. Effective User Throughput (downlink) in the leisure zone: forecast-guided vs 

optimisation. 

This validates the key design premise that each zone should be optimised along the 
dimension most relevant to its dominant traffic direction. In this case, downlink-

enhanced configurations resulted in meaningful end-user gains in areas where video 

and content delivery dominate. 

Together, the zone-specific results clearly support the idea that forecast-informed 

functional zoning enables nuanced, effective, and explainable improvements in 
network performance. Rather than applying a uniform strategy across a diverse 

environment, the network is able to adapt its behaviour to match localized demand 

conditions, guided entirely by prediction outputs. 

These results also demonstrate that manual, forecast-driven adjustments—when 
carefully applied—can capture a significant portion of the benefit expected from 

algorithmic optimisation, while preserving transparency and operational 

interpretability. This prepares the foundation for more formal and scalable optimisation 

techniques to be explored in Deliverable D3.2. 

4.3.3 Adaptive TDD Resource Allocation Based on Forecast Zoning 

In addition to static optimisation of network parameters across zoned areas, a more 

dynamic yet lightweight refinement involves the reconfiguration of TDD  frame 

structure. In practical 5G NR deployments—especially in urban dense networks—the 
TDD configuration significantly impacts throughput balance between uplink and 

downlink, and its adaptability to traffic asymmetry is critical. 

Based on insights from the forecast-guided zoning approach detailed in Sections 4.2 

and 4.3.2, we designed and tested a custom TDD allocation tailored to the functional 
patterns observed across the Bath urban area. The selected frame format—

DSUUUDSUUU—reflects an asymmetrical scheduling scheme: allocating more slots 

to uplink (U) to support business and transit zones where upload demand dominates 

during the day, while still ensuring periodic downlink (D) access for responsive content 

delivery in leisure areas. 

(a) System-Wide Effects of TDD Adjustment 
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Figure 23 illustrates the throughput distribution of downlink Effective User Throughput 
(DL) across the Bath urban area after implementing the optimized TDD configuration. 

Compared to the previous configurations, the new pattern leads to a clear improvement 

in system-wide downlink performance. In the visualized map, regions that previously 

exhibited weaker throughput—especially in high-demand zones—now show stronger 
signal coverage and more consistent capacity delivery. The overall spatial pattern 

becomes more uniform, with fewer low-performance areas and a broader spread of 

enhanced throughput zones. This result demonstrates how even lightweight scheduling 
adjustments, when aligned with predicted traffic dynamics, can significantly boost the 

efficiency of downlink resource usage at scale. 

 

Figure 23. Throughput Distribution of Effective User Throughput (DL) – Optimized TDD 

Configuration (Full Area) 

This confirms that TDD resource balancing, when informed by traffic prediction, can 

yield tangible improvements without altering cell layout, antenna patterns, or requiring 

real-time scheduling intelligence. 

(b) Per-Zone Analysis of TDD Performance 

To further validate the effectiveness of forecast-aware TDD optimisation, we evaluated 

its zonal impact by analysing downlink throughput histograms across the three defined 

functional areas: 

• Business Zone (Figure 24): The TDD adjustment leads to a better distribution 
within the [10–25] Mbps and [25–50] Mbps bins. Although uplink dominates 

during work hours, strategic preservation of downlink slots ensures that content 

delivery and control signalling maintain high responsiveness. 

• Transit Zone (Figure 25): The high user fluctuation and mobility sensitivity in 
transit areas benefit from reduced contention. As seen in the figure, the downlink 

throughput distribution shifts toward the mid-range bins, with more users 

consistently reaching serviceable throughput above 10 Mbps. 
• Leisure Zone (Figure 26): This zone benefits most from increased downlink 

attention. The histogram clearly shows an increase in high-throughput users 

(>25 Mbps), validating that forecast-aligned TDD configurations can amplify 

zone-specific traffic outcomes. 
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Figure 24. Effective User Throughput (DL) in the business zone – Optimised TDD. 

 

Figure 25. Effective User Throughput (DL) in the transit zone – Optimised TDD. 

 

Figure 26. Effective User Throughput (DL) in the leisure zone – Optimised TDD. 

This experiment demonstrates that modifying TDD configurations, even statically and 

without introducing the algorithmic dimension, can produce meaningful and targeted 

performance gains when informed by forecast zoning data. 
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The shift from default-balanced frame formats to asymmetrical scheduling patterns like 
DSUUUDSUUU highlights how small, low-cost adjustments can help address macro-

level demands of traffic heterogeneity. This direction not only complements prior 

optimisation efforts in Sections 4.3.1–4.3.2 but also lays a groundwork for future 

adaptive frame coordination mechanisms, potentially controlled via AI-driven traffic 

predictors. 

These findings strengthen the argument that forecast-aware planning can enable 

performance-aware, traffic-sensitive configuration choices at runtime, and serve as a 

practical intermediate step before fully dynamic, cloud-native network orchestration 

frameworks are introduced in future deliverables such as D3.2. 

 

4.4 Practical Integration and Future Implementation 

The approach outlined in Sections 4.2 and 4.3 forms the foundation of a modular, 

forecast-driven optimisation framework. As illustrated in Figure 27, the framework 

begins with traffic predictions and environment classifications from WP1, which are 
then used to derive zoning decisions and simulation configurations. The simulation 

platform evaluates zone-specific deployments, and feedback is used to iterate toward 

improved configurations. 

 

Figure 27. Schematic architecture of the forecast-guided simulation and optimisation 

pipeline. 

Although this deliverable does not yet implement algorithmic optimisation loops, it 

demonstrates the end-to-end viability of a forecast-guided design process. All 
components—predictive input, calibrated propagation modelling, zone-specific 

simulation, and performance evaluation—have been tested and validated within the 

WP3 environment. In Deliverable D3.2, we will extend this work by: 

• Implementing optimisation algorithms that respond dynamically to forecast data; 
• Conducting comparative evaluations of optimisation performance under varying 

demand and prediction uncertainty; 

• Exploring real-time or semi-static update cycles in which forecast refreshes 

trigger deployment adjustments. 
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This phased development ensures that the optimisation framework remains grounded 
in realistic simulation data, and that its strategy evolution is driven by actual traffic 

behaviour captured by WP1 models. 
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5. Conclusions 

This deliverable has provided a detailed evaluation of how forecast-driven simulation 

capabilities, developed in the early stages of the IPOSEE project, can be integrated into 

practical wireless network design and performance analysis workflows. Building upon 

the methodologies and predictive models introduced in Deliverable D1.1—such as 
environment-aware traffic forecasting, mobility clustering, and uncertainty 

quantification—this document demonstrates their utility not only in deployment 

planning, but also in interference mitigation and multi-system coordination. 

In Section 2, we reviewed the key data preparation and modelling techniques, showing 
how they establish a robust foundation for simulation-informed optimisation. Section 

3 presented two representative scenarios: 

• The Bath urban scenario was used to calibrate and validate the simulation 

platform with real-world measurements. This step ensured that subsequent 

simulations, driven by forecasted traffic inputs, were based on trustworthy and 
spatially accurate propagation models. 

• The Heathrow airport scenario, involving UWB–5G spectrum sharing, 

illustrated how prediction tools can extend beyond traditional mobile planning 
to support dynamic spectrum coexistence. Here, the forecasting outputs were 

used to define adaptive protection zones, enabling safe yet efficient resource 

reuse in a highly congested environment. This confirms that prediction is not 
only useful for guiding the deployment, but also serves as a strategic enabler for 

interference-aware scheduling and cross-system coordination. 

Section 4 translated forecast insights into high-level optimisation strategies, 

introducing functional zoning (e.g., business, leisure, and transit areas) informed by 

traffic patterns. Simulation results showed that even simple, zone-specific 
adjustments—such as differentiated TDD resource configurations—can significantly 

improve network performance. This proves that forecast-guided simulation, even in 

the absence of advanced service-centric optimisation algorithms, already leads to 

practical performance gains. 

In summary, the findings in D3.1 validate the broader IPOSEE vision: Accurate, 

uncertainty-aware traffic forecasting enables more intelligent, adaptive, and service-

centric RAN optimisation applications. These results confirm the feasibility and benefit 

of applying prediction not only to RAN deployment, but also to spectrum governance, 

interference control, and future cross-domain resource orchestration. 

The simulation workflows and use cases established in this deliverable lay a solid 

foundation for the more algorithmic and quantitative service-centric optimisation 

applications for O-RAN RIC to be addressed in D3.2 and beyond. 


